
Life-Long Disentangled Representation Learning 
with Cross-Domain Latent Homologies

Alessandro Achille, Tom Eccles, Loic Matthey, Christopher P. Burgess, 
Nick Watters, Alexander Lerchner, Irina Higgins

UCLA



Automatically detect shifts in the data distribution

Allocate spare representational capacity to learn about the new data

Prevent catastrophic forgetting of previously learnt representations

Share latent dimensions between datasets where appropriate

Life-long learning of disentangled representations



Disentangled representations with CCI-VAE
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Independent factors can be recovered by slowly increasing the representation capacity:
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Atypical and shared factors

Which factors can be reused when the environment changes?
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If a factor is atypical in one environment, it should be disabled to prevent retraining.

Typical and atypical factors can be used to detect changes of environment 

and re-identify past environments.



Imagination Feed-Back Loop

Need to prevent forgetting of atypical (disabled) factors while training on new environments.
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Idea: Train on hallucinated data from old environments and  force equality to past network
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Sharing latent factors without forgetting
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Sharing and reusing semantic factors in multiple environment












Meaningful cross-domain translation
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Dealing with ambiguity 

Presented with ambiguous stimuli our model express uncertainty through feature variance, but 
can reconstruct the without ambiguity.

Emergence of “categorical perception”.

The emergence of “categorical perception”:



Imagination-driven exploration

This imagination-driven exploration can improve the zero-shot performance on new environments.

An agent can act on the environment to realize a state it imagines possible given its past experience.



Conclusions

Learn disentangled factors in a life-long learning setting.

Atypicality allows to detect environment changes and to share factors.

Imagination Feedback Loop to avoid catastrophic forgetting.

Compositional representation is robust and can be adapted to solve tasks in unseen environment.

Can share factors between environment in a semantically meaningful way.






