Flow Matching Tutorial

Heli Ben-Hamu Ricky T. Q. Chen Yaron Lipman R | e OQ Metq

[40 mins] 01 Flow Matching Basics

(35 mins] 02 Flow Matching Advanced Designs

Agenda [35 mins] 03 Model Adaptation

[30 mins] 04 Generator Matching and Discrete Flows

[10 mins] O5 Codebase demo

Flow Matching Guide and Code

a Meta FAIR release
) g

Yaron Marton Peter
Lipman Havasi Holderrieth

Brian
Karrer

David Heli Itai
Lopez-Paz Ben-Hamu Gat

01 Flow Matching Basics

Flow Matching at SCALE
v'

-

A W o
Text-2-Video Text-2-Image
MovieGen, Meta Stable Diffusion 3

batch fold shirts

Protein Generation Robot Action Model
Huguet el a. 24 Black et a. 24

https://ai.meta.com/research/movie-gen/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2405.20313
https://arxiv.org/abs/2410.24164

WHAT IS FLOW MATCHING?

A scalable method to train flow generative models.

HOW DOES IT WORK?

Train by regressing a velocity, sample by following the velocity

The Generative Modeling Problem

[d

The Generative Modeling Problem

[d

e
; l..;u.'-|;."<_ pater

| (= A n.u_._]' 3

X = D(X)

-
g WA |
! | |

=

‘1‘
-

T I e

<

Model

* Direct map

* Pros: efficient sampling
- Cons: not probabilistic

Cons: min-max loss

"Generative Adversarial Networks" Goodfellow et al. (2014)

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Model
- Continuous-time Markov process (Xt)()<t<1

Xt+h «— @, (Xf)

" :

Flow Diffusion Jump

Marginal probability path

Flow Diffusion

For now, we focus on flows...

Flow

-Simple
 Faster sampling
- Exact likelihood estimator

 Flexible, easier to build

Diffusion

- Larger design space
*Slower sampling

-ELBO

Jump

Flow as a generative model

Warping Source Xp ~ p

- Markov: Xpyp = Wiy A X))

Flow = Velocity

d
d_t%(x) = u,(y(x))

Flow

W, (X)

I BE SR

BN A A S
I

Solve ODE 1 ' Differentiate

1/(X)

Velocity

* Pros: velocities are linear

-Cons: simulate to sample

Velocity u, generates p, if

X, = y(Xy) ~ p,

Flow Matching

Train a velocity Sample

generating p, with from Xy~ p
po=pandp, =gq

ampling a flow model|

EXf = u’(X)

Use any ODE numerical solver.

One that works well: Midpoint

Flow Matching

Train a velocity Sample

generating p, with from X, ~ p
Po=pandp; =g

Simplest version of Flow Matching

for _ in range(10000):
x_1 Tensor (make_moons (256, noise=0.05)[0])
Xx_0 = torch.randn_like(x_1)
t = torch.rand(len(x_1), 1)
xt = (1-1t) *x 0+t * x_1
dx_t = x_1 - x_0
optimizer.zero_grad()
loss_fn(flow(x_t, t), dx_t).backward()
optimizer.step()

T ————— .

— v, 2
£.X0.X, || Y X)) — (&) — Xy

"Flow Matching for Generative Modeling" Lipman el al. (2022)
"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)
"Building Normalizing Flows with Stochastic Interpolants” Albergo et al. (2022)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.15571

Simplest version of Flow Matching

- Arbitrary X, ~ p, X; ~ ¢q

- Arbitrary coupling (X, X;) ~ 7

Why does it work?
« Build flow from conditional flows

» Regress conditional flows

Build flow from conditional flows

Generate a single target point
NN N NN r *
N NN

T
e

/
/
7
)
;

—itt
=4 —

1

Y
K— T 17 r *

pt\l(x | Xl) conditional probability

ut(x ‘ xl) conditional velocity

Build flow from conditional flows

Generate a single target point

SN NN T

NNN

P

o
—_—]

/
f
7
;
’

e)
- =

N S S

. ’\I
i @Jj

K— 1 4 #

1

pAx)

14/(x)

_let\l(x‘Xl) 4—Pt\1(x|xl) conditional probability

average

— [I/tt(Xt ‘ Xl)

Xt — x] — ut(x\xl) conditional velocity

The Marginalization Trick

Theorem®*: The marginal velocity generates the marginal probability path.

u(x) =Lk [ut(thXl) | X, = x] px) = [EX1 ptu(xle)

"Flow Matching for Generative Modeling" Lipman el al. (2022)
"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)
"Building Normalizing Flows with Stochastic Interpolants” Albergo et al. (2022)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.15571

Flow Matching Loss

* Flow Matching loss:

Z FM(H) = [Et,Xt .

utg (X)) — u(X)

» Conditional Flow Matching loss:

Z CFM(H) — [Et,Xl,Xt

uf(X) = (X, 1 X))

Theorem: Losses are equivalent,

VH‘EZ FM(H) — Vég CFM(H)

Generalized Flow Matching Loss

* Flow Matching loss:

» Conditional Flow Matching loss:

g CFM(H) — [Et,X 15X

(X, X)), ul(X))

Theorem: Losses are equivalent iff D is a Bregman divergence.

VH‘SZ FM(H) — VH‘SZ CFM(H)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587

Generalized Matching Loss

Theorem: Losses are equivalent iff D is a Bregman divergence.

Vo ExyD(Y, 8%X)) = Vo ExD(E[Y | X1, g%(X))

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587

How to choose y/ (x| x;)?

* Optimal Transport minimizes Kinetic Energy:

1 1

Ex -l < Ey x| 19X | X1 %ds
0 0

Linear conditional flow:

* Minimizes bound /(1

- Reduces KE of initial coupling X

-Exact OT for single data points

w(x|x;) =tx;+ (1 —0bx

*Not Optimal Transport
(but in high dim straighter)

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)
"On Kinetic Optimal Probability Paths for Generative Models" Shaul et al. (2023)

https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2306.06626

How to choose y/ (x| x;)?

* Dynamic Optimal Transport minimizes Kinetic Energy:

Linear conditional flow

Noise
Data

— Y ~ | _— - e

Linear conditional flow: Dim=2 Dim=100 Dim=10000

* Minimizes bound Cosine conditional flow

- Reduces KE of initial coupling ‘ o | 4]])]

-Exact OT for single data points S

*Not Optimal Transport " ’ | & _ -) e
Dim=2 ‘Dim=100 'Dim=10000

(but in high dim straighter)

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)
"On Kinetic Optimal Probability Paths for Generative Models" Shaul et al. (2023)

https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2306.06626

Flow Matching with Cond-OT

L0 =ED(u’(X),u(X,|X,)

gCFM(H) E uz‘e Xt - Xl _XO 7

Affine paths

1
w(x|x;) =ax; +ox ><

0 1

I/lt(X) = [thI + étXO | Xt — X] Velocity prediction
— dX + bt |= [X() | Xt — X] Source x; prediction
— ¢, | [Xl | Xt — X] + dt Target x; prediction

Gaussian paths px) = N (x|0,D) my (%, X)) = pP(Xp)q(xy)

I/tt(.X) = [o'ctXl + 6tXO | Xt — X] Velocity prediction

——— —— —_— — — m— e S— e —— = e — e —— 4&|

—'a A + b [E [XO | X — .X] Source x;, prediction € (noise) prediction)
- B Probability Flow ODE R -
)

= | [Xl | Xt — X] + dt Target x; prediction x, prediction (denoiser) |
L R | i » f _

—

“Score-Based Generative Modeling through Stochastic Differential Equations” Song et al. 2020

https://arxiv.org/abs/2011.13456

Affine and Gaussian paths

A
velocit x1-prediction xg-prediction score
0
B
- - - . - . 2)
velocity 0.1 Ot Q40— 0:Qy Qt OtQp—Q40¢ o7 OtOtQt— QO
) O¢ ? O¢ Ut ? At Ut ? At
z1-prediction 0.1 1 _ o 1 oy
1°P ’ ap’ o o) o
zo-prediction 0,1 0, —o;
score 0,1

Affine paths

Gaussian paths

Flow Matching

Defined by any p,;; we

know how to generate

- arbitrary p, g and coupling

* u, cond-OT/linear =
performance, efficiency

CTMP

Data
Conditional paths

Velocity Param

Gaussian affine paths

Process

Diffusion models
(deterministic)

Defined by forward process

(data — noise)

- p =V, independent coupling
« N(ax;,67°1) singularity

° €,X1,V

Flow, Diffusion, CTMC

02 Flow Matching Advanced Designs

dPp ™

2) ".n.
ﬁ?'s'-ﬂ?.u

;E‘f’sﬁﬂ

®:

@

Conditioning and Geometric
Flow Matching

Guidance Data Couplings

u(x|y = "Husky")

Conditioning and Guidance

Conditioning and Guidance

Labeled Data: (X{,Y) ~gq

“Husky"

Label
Ye ¥ CRF

Conditioning and Guidance

Goal: learn g(x, | y)

Conditional Models Pr1 (% X1 [¥) = py (X x)g(x; 1 3)

Marginal probability path q(x; |y = "Husky")

Pz\Y(XD’) — EX1 [Pt|1(x|X1) | Y =)’]

Marginal velocity

u(x|y) = [E[ut(XtIXl) ‘Xt =X, I = y]

u(x|y = "Husky")

Conditional Models

Train same neural network on all conditions:
uf(xly = "Husky")

gCFM(H) — _t,(XO,Xl,Y)Nﬂo,LYHut(Xt | Xl) o MZQ(Xt‘ Y)Hz

where uf(x\y) : [0,1] X R % RF - R4

ul(x|y = "Corgi")

Conditional Models - Examples

Class Conditioning Inverse Problems Text-2-Image

Super-resolution
64 X 64 — 256 x 256

-

“A cozy living room with a
painting of a corgi on the
wall above a

couch and a round coffee
table in front of a couch
and a vase of flowers on a
coffee table”

[Lipman et al. ’22]

[Nichol et al. ’22]
“Flow Matching for Generative Modeling” Lipman et al. (2022)

“GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models” Nichol et al. (2021)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2112.10741

Guidance for Score Matching

Guide unconditional model with classifier to
sample from conditional distribution

Classifier Guidance V. logp,y(x|y) =V, ogp,(x)+wV,logpy,(y]x)

Classifier-Free Guidance Vxl()gﬁz\y(x‘)’) = (1 =w)V logp,(x)+w VXIOgP;\Y(X‘Y)

Guidance for Flow Matching

Assume a velocity field trained with Gaussian paths.

Classifier Guidance i (x|y) = ulx)+wb, VxIngY‘t(y\x)

Classifier-Free Guidance ﬁt(x\y) = (1 = W)ut(X)+wut(X\y)

Guidance for Flow Matching

Assume a velocity field trained with Gaussian paths.

Flow Matching with Classifier-Free guidance:

"Guided Flows for Generative Modeling and Decision Making" Zheng et al. (2023)
"Mosaic-SDF for 3D Generative Models" Yariv et al. (2023)

"Audiobox: Unified Audio Generation with Natural Language Prompts" Vyas et al. (2023)

"Scaling Rectified Flow Transformers for High-Resolution Image Synthesis" Esser et al. (2024)

"Movie Gen: A Cast of Media Foundation Models" Polyak et al. (2024)

https://arxiv.org/abs/2311.13443
https://arxiv.org/abs/2312.09222
https://ai.meta.com/research/publications/audiobox-unified-audio-generation-with-natural-language-prompts/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2410.13720

Guidance for Flow Matching

"Movie Gen: A Cast of Media Foundation Models" Polyak et al. (2024)

Ablation: text-2-video generation

:) A girl is running across a beach
FM vs. Diffusion [Polyak et al. '24]

and holding a kite. She's wearing

100
B FM [Diffusion jean shorts and a yellow t-shirt.
S N *?‘iﬁ The sun is shining down.
@ 75 G «- A
8 ;:- \';:h:i}‘-{:.c %
& 58.3% M FROSRENNRSIR LS
5 53.5%
@ 50
al
g
- 25 A sloth with pink sunglasses lays
on a donut float in a pool. The sloth
0 is holding a tropical drink. The
Quality Text Alignment world is tropical. The sunlight casts

a shadow.

https://arxiv.org/abs/2410.13720
https://arxiv.org/abs/2410.13720

Guidance for Flow Matching

Assume a velocity field trained with Gaussian paths.

Flow Matching with Classifier-Free guidance:

“Guided Flows for Generative Modeling and Decision Making ” Zheng et al. (2023)
"Mosaic-SDF for 3D Generative Models" Yariv et al. (2023)

"Audiobox: Unified Audio Generation with Natural Language Prompts" Vyas et al. (2023)
"Scaling Rectified Flow Transformers for High-Resolution Image Synthesis" Esser et al. (2024)

"Movie Gen: A Cast of Media Foundation Models" Polyak et al. (2024)

Open Problem

How to guide FM with non-Gaussian paths?

https://arxiv.org/abs/2311.13443
https://arxiv.org/abs/2312.09222
https://ai.meta.com/research/publications/audiobox-unified-audio-generation-with-natural-language-prompts/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2410.13720

Conditioning and , Geometric
Data Couplings

Guidance Flow Matching

q(x; |y = "Husky") -

u(x|y = "Husky")

Data Couplings

Until now: focused on successfully transforming p to g.

gCFM(H) — S0X0X, Hut(Xt ‘ Xl) - uz?(Xt)”z

X, = w(Xy | X;)

Data Couplings

Until now: focused on successfully transforming p to g.

gCFM(H) — S0X0X, Hut(Xt ‘ Xl) - uz?(Xt)”z

(Xo> X1) ~ o1 = p(Xp)g(X;)

What about dependent couplings?

Data Couplings

Paired Data

 Non-Gaussian source distribution
- Alternative conditioning approach

- Inverse problems

Data Couplings

Paired Data Multisample Couplings

 Non-Gaussian source distribution
- Alternative conditioning approach

- Inverse problems

Data Couplings

Paired Data Multisample Couplings

>

=

(i

e
P q
- Non-Gaussian source distribution - Applications to Optimal Transport
» Alternative conditioning approach - Efficiency: straighter trajectories

- Inverse problems

Data Couplings

Paired Data

 Non-Gaussian source distribution
- Alternative conditioning approach

- Inverse problems

Paired Data

Labeled Data: (X, Y) ~ ¢ —

Goal: learn g(x; | y)

Paired Data

Labeled Data: (X;,Y) ~ g

Goal: learn g(x; | y)

Conditional Model

q(x; | y)

u(x|y) generates p, (x| y)

Paired Data

Labeled Data: (X, Y) ~ ¢ —

Goal: learn g(x; | y)

Dependent Couplings Conditional Model

X
5 q(x1y)

Xo=Y+e€e ~p u(x|y) generates p, (x| y)

"12SB: Image-to-Image Schrodinger Bridge" Liu et al. (2023)
"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872

Paired Data

Labeled Data: (X, Y) ~ ¢ —

Goal: learn g(x; | y)

Dependent Couplings

Xo=Y+e ~p

"12SB: Image-to-Image Schrodinger Bridge" Liu et al. (2023)
"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872

Paired Data

Labeled Data: (X, Y) ~ ¢ —

Goal: learn g(x; | y)

Dependent Couplings

Alter source distribution and
coupling instead of adding condition
q
Xo=Y+e ~p

"12SB: Image-to-Image Schrodinger Bridge" Liu et al. (2023)
"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872

X, = w(Xy | X;)

Paired Data

Labeled Data: (X, Y) ~ ¢ —

Goal: learn g(x; | y)

~ Dependent Couplings

QCFM(H) — XX Hut(thxl) — uf(Xt)Hz

(X()9 X19 Y) ~ ﬂ()\l(x()‘xla y)Q(xla y)

Xo=Y+e ~p

"12SB: Image-to-Image Schrodinger Bridge" Liu et al. (2023)
"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872

X, = w(Xy | X;)

Paired Data

Labeled Data: (X, Y) ~ ¢ —

Goal: learn g(x; | y)

~ Dependent Couplings

QCFM(H) — XX Hut(thxl) — uf(Xt)Hz

(X()9 X19 Y) ~ ﬂ()\l(x()‘xla y)Q(xla y)

(Xl Y =y) ~qlx;|y)

"12SB: Image-to-Image Schrodinger Bridge" Liu et al. (2023)
"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872

Paired Data

Model FID-50K
(Improved DDPM (Nichol & Dhariwal, 2021) 12.26

SR3 (Saharia et al., 2022) 11.3

ADM (Dhariwal & Nichol, 2021) 7.49
_Cascaded Diffusion (Ho et al., 2022a 4.88)

I°SB (Liu et al., 2023a) 2.70

Dependent Coupling (Ours) 2.13

Super-resolution 64 X 64 — 256 X 256

Infilling

"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

https://arxiv.org/abs/2310.03725

Data Couplings

Multisample Couplings

- Applications to Optimal Transport

- Efficiency: straighter trajectories

Multisample Couplings

Z crnl(0) =

= x (1 X)) — uf X))

Given uncoupled source and target distributions,

can we build a coupling to induce straighter paths?

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

KE(w) < E, [IX; = XllI°

70,1
Kinetic Energy Coupling cost

Marginal u, with cond-OT FM and 7 |

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2209.03003

Multisample Couplings

KE(u,) <

Kinetic Energy

7101 ‘

Coupling cost

X, — Xo 17

Use mini batch optimal transport couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

KE(x) < E, [IX; = XllI°

70,1
Kinetic Energy Coupling cost

Use mini batch optimal transport couplings

Sample Xéi) ~ D, Xl(i) ~ q,1 € [Kk]

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

KE(x) < E, [IX; = XllI°

70,1
Kinetic Energy Coupling cost

Use mini batch optimal transport couplings

Sample Xéi) ~ D, Xl(i) ~ q,1 € [Kk]

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

KE(,) < E, 11X, — Xl

Kinetic Energy Coupling cost

Use mini batch optimal transport couplings

Sample Xéi) ~ D, Xl(i) ~ q, i € k] = argminﬂeBk[Eﬂ”Xéi) - XV||?

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

KE(x) < E, [IX; = XllI°

7001

Kinetic Energy Coupling cost

Use mini batch optimal transport couplings

Sample Xéi) ~ D, Xl(i) ~ q,1 € [Kk]

JZ'k

= argmin__, E IX{” - X}||?

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

Sample (X{,X\"), (i, j) ~ ="

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

KE(x) < E, [IX; = XllI°

70,1
Kinetic Energy Coupling cost

Whenk =1 - 7y = p(Xy)g(X))

Sample X\ ~ p, X\ ~ g, i € [K] 7t = argmin__, E|IX;" — X}”|I” Sample (X", X)), (i,j) ~ 7*

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

M UItlsample Coupllngs FM with cond-OT is not marginal OT!

KE(x) < E, [IX; = XllI°

70,1
Kinetic Energy Coupling cost

When k — o0, u, generates the OT map

Sample X(gi) ~ D, Xl(i) ~ q, 1 € [k] ak = argminﬂeBk[Eﬂ”Xé") - XV||? Sample (X(gi),Xl(j)), (i,) ~ 7

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482

Multisample Couplings

[Pooladian et al. '23]

130 — ﬂ(’)‘,lCouplings
120 ﬂ(l)‘,l-FM Coupling
17
@) 110 =
O
100
90 = e O O) =)
1 32 1024

Batch Size

"SE(3)-Stochastic Flow Matching for Protein Backbone Generation" Bose et al. (2023)

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)

- High dimensions - minor improvement in
sampling speed compared to tailored
samplers.

- Shows promise in lower dimensional
problems for scientific applications

(e.g. protein backbone design [Bose et al. '23]).

"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2310.02391
https://arxiv.org/abs/2310.02391

Data Couplings

Paired data:

"12SB: Image-to-Image Schrodinger Bridge" Liu et al. (2023)
"Stochastic interpolants with data-dependent couplings” Albergo et al. (2024)

"Simulation-Free Training of Neural ODEs on Paired Data" Kim et al. (2024)

Multisample couplings:

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

"SE(3)-Stochastic Flow Matching for Protein Backbone Generation" Bose et al. (2023)

"Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation" Huguet et al. (2024)

https://arxiv.org/abs/2302.05872
https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2410.22918
https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2310.02391
https://arxiv.org/abs/2405.20313

Conditioning and , Geometric
Data Couplings

Guidance Flow Matching

g(x; |y = "Husky")

u(x|y = "Husky")

Geometric Flow Matching

Data with Symmetries Riemannian Manifolds

- Equivariant flows — invariant densities - Simulation free on simple manifolds

- Alignment couplings - General geometries

Geometric Flow Matching

Data with Symmetries

- Equivariant flows — invariant densities

- Alignment couplings

Data with Symmetries

Atom 3D
Data Type Positions
N I'4

» Sets
- Graphs

- Hyper Graphs . —

= Rnxd

Data with Symmetries

Data
» Sets
- Graphs
- Hyper Graphs

— N

= Rnxd

91nwiiad

Data with Symmetries

Symmetries are transformations under
Data which an object is invariant.

— N

Symmetries = Rn)(d

» Sets
- Graphs

- Hyper Graphs

- S - permutations
n~ P Rotate

- SO(n) - rotations
- SE(3) - rigid motions

(rotations, reflections, translations)

Invariant densities

Example: Reflection

Symmetry Group G

Invariant densities

Example: Reflection

Symmetry Group G

G=1{g,ce} g X

Invariant densities

Example: Reflection

Symmetry Group G

G=1{g,ce} g X

Invariant
pensity 89 =4 N

Equivariant Flows

Example: Reflection

Symmetry Group G
G — {ga 8} g o
P
Invariant
q(g - x) = g(x)

Density

Equivariant Flows

Example: Reflection

pt(g - X) = pt(x)

Invariant probability path

Equivariant Flows

Example: Reflection

pt(g - X) = pt(x)

Invariant probability path

Equivariant Flows

Example: Reflection

Equivariant Flow

w(g - X) = g - ylx)

Solve ODE | ‘ Differentiate

u(g - x) = g - u(x)

Equivariant Velocity

pt(g - X) = pt(x)
Invariant probability path

"Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities" Kohler et al. (2020)

https://arxiv.org/abs/2006.02425

Equivariant Flows

Example: Reflection

Equivariant Flow

w(g - X) = g - ylx)

Solve ODE | ‘ Differentiate

u(g - x) = g - u(x)

Equivariant Velocity

pt(g - X) = pt(x)
Invariant probability path

"Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities" Kohler et al. (2020)

https://arxiv.org/abs/2006.02425

Equivariant Flow Matching

Example: Reflection

Equivariant 0 0
Velocity u (g - x) = g - uy (x)

Train with CFM:
L@ = Ex x 14X, | X)) = u(X)II17

(Xoo X)) ~ 15,1 = p(Xo)q(X)) pLg -+ x) = p(x)

Invariant probability path

"Equivariant flow matching" Klein et al. (2023)

ivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023)

https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168

Equivariant Flow Matching

Equivariant
Velocity

u’(g - x) = g - u’(x)

Train with CFM:

Z crnl(0) =

—1.X..X, ”ut(Xt ‘ Xl) o u;g(Xt)Hz

(Xo> X1) ~ o1 = p(Xp)q(X;)

ivariant flow matching" Klein et al. (2023)
ivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023)

Example: Reflection

https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168

Equivariant Flow Matching

Example: Reflection

Equivariant 0 9
Velocity u (g - x) = g - uy (x)

Train with CFM:
L@ = Ex x 14X, | X)) = u(X)II17

(Xo> X1) ~ o1 = p(Xp)q(X;)

Coupling disregards symmetry =P Curved trajectories

Alignment Couplings

Example: Reflection

Equivariant 0 0
Velocity u (g - x) = g - uy (x)

Train with CFM:
L@ = Ex x 14X, | X)) = u(X)II17

(Xo> X1) ~ ”(?,Iilgjn

"Equivariant flow matching" Klein et al. (2023)
"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023)

https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168

Equivariant Flow Matching

"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023)
"Fast Point Cloud Generation with Straight Flows" Wu et al. (2022)
"Equivariant flow matching" Klein et al. (2023)

Airplane ™

Chair

Car

55-class

https://arxiv.org/abs/2212.01747
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168

Geometric Flow Matching

Data with Symmetries Riemannian Manifolds

- Equivariant flows — invariant densities - Simulation free on simple manifolds

- Alignment couplings - General geometries

Generative Modeling on Manifolds

Scientific Data Robotics Climate Modeling

=

SE(3) invariant SO(2) invariant
Protein structure generation Block stacking

Spherical Geometry S?

"Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation" Huguet et al. (2024)
"Planning with Diffusion for Flexible Behavior Synthesis" Janner et al. (2022)

https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2405.20313

Need to re-define the
geometric structures

we have In Euclidean space.

Riemannian Manifolds

Global differential

structure

Smooth

Riemannian Manifolds

Global differential

structure

Smooth

Riemannian Manifolds

Global differential

Smooth
structure
+
Riemannian <u, V>g
Metric
| u,v €1,

v

Riemannian Manifold

Flows on Manifolds

Flow

W, (X)

Solve ODE | ‘ Differentiate

u(x) € 1.

Velocity

Flows on Manifolds

Flow

W, (X)

Solve ODE | ‘ Differentiate

u(x) € 1.

Velocity

Riemannian Flow Matching

* Riemannian Flow Matching loss:

Zz RFM(H) = [Et,Xt

1 (X)) — u(X)|[;

N\

Riemanninan
Metric

"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Riemannian Flow Matching

* Riemannian Flow Matching loss:

Zz RFM(H) = [Et,Xt

ul(X) — u(X) §

* Riemannian Conditional Flow Matching loss:

uf (X) =X, 1 X))

Z RCFM(H) — [Et,Xl,Xt

Theorem: Losses are equivalent,

RCFM(

"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Conditional Flows - Simple Geometries

Straight lines == Geodesics

For simple manifolds (e.g. Euclidean, sphere, torus, hyperbolic):

w(Xo | X)) = exp, (k(Dlog, (x,)), € [0,1]

Closed-form geodesic
Scheduler k(£): k(0) = 0 , k(1) = 1

Simulation Free!

"Flow Matching on General Geometries” Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Conditional Flows - General Geometries

Geodesics can be hard to compute

Concentrate probability at boundary

"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Conditional Flows - General Geometries

Choose a premetric satisfying:

1. Non-negative: d(x,y) > 0.
2. Positive: d(x,y) = 0iffx = y.
3. Non-degenerate: Vd(x,y) # 0iff x # y.

Build conditional flow satisfying:

d(y(xy | x1), x;) = K(®)d(xy, X;)

Scheduler k() = 1 — x(?)

"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Conditional Flows - General Geometries

Build conditional flow satisfying:

d(y(xy | x1), x) = K(£)d(xy, x;)

Vd(x, x)
[V d(x, x)IlZ

d(x, x)

Requires simulation

"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Conditional Flows - General Geometries

Build conditional flow satisfying:

d(y(xy | x1), x) = K(£)d(xy, x;)

V d(X, xl) Geodesic Biharmonic

d(x, X)) ———
VA, x)|12

Requires simulation

"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660

Riemannian Flow vs. Score Matching

Riemannian Flow Matching Riemannian Score Matching
Simple manifolds Simulation Free! Solve SDE
General manifolds Solve ODE Solve SDE
Regression target (X, | X;) Vlog pi(x | xp)

"Riemannian Score-Based Generative Modelling" De Bortoli et al. (2022)
"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660
https://proceedings.neurips.cc/paper_files/paper/2022/hash/105112d52254f86d5854f3da734a52b4-Abstract-Conference.html

Riemannian Flow vs. Score Matching

Training iterations per second

100 -
R L. -e
T T e T
_ ~~
80 _8 . \
0.0 +------ e D R —
60- c . -
§£J ~0.1 —— \\'
40- S I . =—®— Riemannian Flow Matching
0. S - —e— Riemannian Score-based
—0.3 4 -' -®- Moser Flow e
0' T - T L ™
Simulation (200 steps) Simulation-free 100 101! 102

N (Dimension)

"Riemannian Score-Based Generative Modelling" De Bortoli et al. (2022)
"Flow Matching on General Geometries" Chen & Lipman (2023)

https://arxiv.org/abs/2302.03660
https://proceedings.neurips.cc/paper_files/paper/2022/hash/105112d52254f86d5854f3da734a52b4-Abstract-Conference.html

Geometric Flow Matching

Equivariant Flow Matching:

"Fast Point Cloud Generation with Straight Flows" Wu et al. (2022)
"Equivariant flow matching" Klein et al. (2023)
"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023)

"Mosaic-SDF for 3D Generative Models" Yariv et al. (2023)

Riemannian Flow Matching:

"Flow Matching on General Geometries" Chen & Lipman (2023)

"SE(3)-Stochastic Flow Matching for Protein Backbone Generation" Bose et al. (2023)

"Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation” Huguet et al. (2024)
"FlowMM: Generating Materials with Riemannian Flow Matching" Miller et al. (2024)

"FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions" Sriram et al. (2024)

"Metric Flow Matching for Smooth Interpolations on the Data Manifold" Kapusniak et al. (2024)

https://arxiv.org/abs/2302.03660
https://arxiv.org/abs/2310.02391
https://arxiv.org/abs/2405.20313
https://arxiv.org/abs/2406.04713
https://arxiv.org/abs/2410.23405
https://arxiv.org/abs/2405.14780
https://arxiv.org/abs/2212.01747
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168
https://arxiv.org/abs/2312.09222

5

T

B

03 Model Adaptation

A

32T

You’ve trained a model. What next?

Inverse Problems
(Training-Free)

Faster Sampling Reward Fine-tuning

| = DOPRI5
1 —@— RK2
] —e— RK2-BES

PC1

You’ve trained a model. What next?

Faster Sampling

PC1

S At

27 S
LEF AU
[t S _\‘}4.

Faster sampling by straightening the flow

1-Rectified Flow
(Flow Matching)

2-Rectified Flow

OCZ(Q) — -:t,(XO,Xl)Nn&HutH(Xt) o (Xl o AX())H2

Rectified Flow refits using the pre-trained (noise, data) coupling.

Leads to straight flows.

“Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow” Liu et al. (2022)
“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2022)

Faster sampling by straightening the flow

N=1 N =2 N =4 N =38 N = 25

SD 1.5-DPM Solver

2-Rectified Flow

‘Masterpiece color pencil drawing of a horse,; bright vivid color’

“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2022)

Faster sampling by straightening the flow

N=1 N =2 N =4 N =38 N = 25

SD 1.5-DPM Solver

2-Rectified Flow

‘Masterpiece color pencil drawing of a horse; bright vivid color’

Caveat
Enforcing straightness restricts the model. Often a slight drop in sample quality.

“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2022)

Faster sampling by self-consistency loss

Velocity is defined as a limiting quantity:
Euler method is an approximation

T Xt+h — X
u(x) =lm—m—m——— = X_ , ~X + hu(X)

h—() h

Instead, define shortcuts with step size /2 as additional argument°

X, L= X, + hs t(Xt’ h) MNote hmst(x h) = t() 4

h—>O

“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Faster sampling by self-consistency loss

Velocity is defined as a limiting quantity:
Euler method is an approximation

T Xt+h — X
u(x) =lm—m—m——— = X_ , ~X + hu(X)

h—() h

Instead, define shortcuts with step size /2 as additional argument°

X, L= X, + hs t(Xt’ h) MNote hmst(x h) = t() 4

h—>O

Shortcuts satisfy a consistency property:

Xt+2h — Xt+h + hSt(Xt+h’ h) (A N
. \‘ =X 1 2hst(Xt,2h)
— Xt hSt(Xt’ h) + hSt(Xt+h’ h) —— —
. one step
two steps

“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Faster sampling by self-consistency loss

Shortcuts satisfy a consistency property:

f
\

X P24 5Ky W2 = 5020 |

_— ————— — e ——— e —

Shortcut models are trained by a mix of Flow Matching & consistency:

3(9) — _t,h,XO,X1 HSt(XpO) T (Xl o)(O)H2 1 HSt(Xtazh) o StargetHZ

Flow Matching Self-consistency

where §/478¢! = s(X,, h)/2 + St(Xt+h’ h)/2

“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Faster sampling by self-consistency loss

Flow Matching Shortcut Models

“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Faster sampling by self-consistency loss

Flow Matching Shortcut Models

H

Caveats
Shortcuts with 2 > 0 do not work with classifier-free guidance (CFG).

CFG weight can & must be specified before training.

“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Faster sampling by only modifying the solver

Faster sampling by only modifying the solver

Can adapt pre-trainedmodels to different schedulers.

From original scheduler: To modified scheduler:

Xt - atXI + GIXO

Xt — &IXI + 5IXO

“Elucidating the design space of diffusion-based generative models” Karras et al. (2023)

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023)

Faster sampling by only modifying the solver

Can adapt pre-trainedmodels to different schedulers.

From original scheduler: To modified scheduler:

Xt - OCtX1 + GIXO

Xl — &IXI + 5IXO

Related by a scaling & time transformation: _ _
ay = sin(gtl.o)’ G, = Cos(gtl.o)

X, =5,X,

r r<ht,

t. = SNR™'(SNR())

where _
S, = 0,/0,

0
- =3
i ==
: —
®
O
Q)
0.0 0.2 0.4 0.6 0.8 1.0

“Elucidating the design space of diffusion-based generative models” Karras et al. (2023)

kk

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023)

Faster sampling by only modifying the solver

< Higher NFE / compute

Ground truth

reference

from1to 10

“a teddy bear sitting in a fake bath tub with a rubber ducky””

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023)
“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

Faster sampling by only modifying the solver

Higher NFE / compute

Bespoke solvers:

Decouples model & solver.

Standard
Model is left unchanged. Ground truth solver
Parameterize solver and optimize. reeence
Can be interpreted as finding from 1 to 10

best scheduler + more.

Solver consistency: sample quality » Optimized

Is retained as NFE — 0.

<

“a teddy bear sitting in a fake bath tub with a rubber ducky””

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023)
“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

Faster sampling by only modifying the solver

Bespoke solvers:

ImageNet 64
10
Decouples model & solver. == RKEuler —— DPMTTOM)
Model is left unchanged. oL/ T T RENISRoINt | Optimized on
==o==_DDIM == BNS-transfer | ———————————— e
Parameterize solver and optimize. "l == DPM++(2M) =-= BNS CIFAR10
_ 1y o\ %% \Bespoke solvers
Ak *
TH g - °
4_
Bespoke solvers can transfer across
3_
different data sets and resolutions. ;.
1

Caveat NFE
However, does not reach distillation

performance at extremely low NFEs.

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023)
“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

Faster sampling references

Rectified flows: (Straighten the flow using the pre-trained coupling)

(14

-low Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow” Liu et al. (2022)

(1

nstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-lmage Generation” Liu et al. (2024)
mproving the Training of Rectified Flows” Lee et al. (2024)

(14

Consistency & shortcut models: (Predict future trajectories without straightening)

“Consistency Models” Song et al. (2023)

“Improved Techniques for Training Consistency Models” Song & Dhariwal (2023)
“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Trained & bespoke solvers: (Optimize transferable solvers without modifying the model)

“DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics” Zheng et al. (2023)
“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023)

“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

https://arxiv.org/search/cs?searchtype=author&query=Dhariwal,+P

You’ve trained a model. What next?

Inverse Problems
(Training-Free)

Examples of inverse problems

Text-conditional audio infilling

Infill

ORIGINAL AUDIO

MODEL OUTPUT

g _
4

MASKED AUDIO
(—) Audiobox
. .

TEXTSTYLE PROMPT

Super-res

River running and
then a dog barks —

several times

JPEG

“Audiobox: Unified Audio Generation with Natural Language Prompts” Vyas et al. (2023)
“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Solving inverse problems by posterior inference

Formulate as posterior inference given a pretrained model and a known corruption:

pl\Y(xl | y) 0<P1(X1)PY\1(Y | X1)

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Solving inverse problems by posterior inference

Formulate as posterior inference given a pretrained model and a known corruption:

Pl\Y(X1 | y) 0<P1(X1)PY\1(Y | X1)

Velocity that generates the posterior can be constructed via “conditional guidance”:

dlog(a,/o,)
dt

u (x| y) = u(x) + 51‘2 thlong\t(y | X;)

(unknown)

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Solving inverse problems by posterior inference

Formulate as posterior inference given a pretrained model and a known corruption:

Pl\Y(X1 | y) 0<P1(X1)PY\1(Y | X1)

Velocity that generates the posterior can be constructed via “conditional guidance”:

dlog(a,/o,)
dt

u (x| y) = u(x) + Gtz thlong\t(y | X;)

(unknown)

One ideais to replace the unknown score function with a heuristic approximation:

dlog(a/o)
dt

approx

thl()g pY‘t (y ‘ xt)

ulx|y) =~ u(x)+ Gtz

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Solving inverse problems by posterior inference

Failure cases

(c) OT-ODE

(a) Reference (b) Distorted (d) VP-ODE (e) IIGDM

Caveats
Typically requires known linear corruption and Gaussian prob path.

Can randomly fail due to the heuristic sampling.

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Solving inverse problems by optimizing the source

1. Don’t want to rely on likelihoods / densities.

2.Have observation y being nonlinear in x;.

Model density is unreliable Latent FM decoders are nonlinear

/

— Decoder

00 02 04 06 0B 10 \
t

y = f(x;) = corruption(decoder(x,))

Higher density
higher chance of being sampled

“Do Deep Generative Models Know What They Don't Know?” Nalisnick et al. (2018)
“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Solving inverse problems by optimizing the source

Inverse problems often formulated as optimization:

min L(x,) 6.9, L) =|fx)—yl

A1 Corruptionfn. Corrupted obs.

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Solving inverse problems by optimizing the source

Inverse problems often formulated as optimization:

min L(x,) 6.9, L) =|fx)—yl

A1 Corruptionfn. Corrupted obs.

Simple idea of using a pre-trained flow 1//19 as a diffeomorphism:

(smooth invertible fn.)
: 0
II%CIII Ly (xp))

0

and optimize the source variable X,

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Solving inverse problems by optimizing the source

Inverse problems often formulated as optimization:

min L(x;) e.g., L(x)=[fx)=yl

A1 Corruptionfn. Corrupted obs.

Simple idea of using a pre-trained flow 1//19 as a diffeomorphism:
(smooth invertible fn.)

° 0
min Ly (xp))
20
and optimize the source variable X,

90%

masked

Distorted Initial z(1) step 2 step 4 step 6 step 8 step 10 step 12

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Solving inverse problems by optimizing the source

H}Cion Ly (%))

Theory: Jacobian of the flow VxOl/fle

projects the gradient along the Va(1)L(z(1))

data manifold.

Intuition: Diffeomorphism

enables mode hopping!

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Solving inverse problems by optimizing the source

Conditioned on text & corrupted image Conditioned on text & corrupted audio

Conditioned on molecular properties

Works with latent text-conditional models. Simplicity allows application in multiple domains.

Caveat: Requires multiple simulations and differentiation of 1/119.

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Inverse problems references

Online sampling methods inspired by posterior inference: (Modify sampling procedure)

“Diffusion Posterior Sampling for General Noisy Inverse Problems” Chung et al. (2022)

“A Variational Perspective on Solving Inverse Problems with Diffusion Models” Mardani et al. (2023)

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)

“Training-free Linear Image Inverses via Flows” Pokle et al. (2023)

“Practical and Asymptotically Exact Conditional Sampling in Diffusion Models” Wu et al. (2023)

“Monte Carlo guided Diffusion for Bayesian linear inverse problems” Cardoso et al. (2023)

Source point optimization: (Use pre-trained flow to transform optimization landscape)

“Differentiable Gaussianization Layers for Inverse Problems Regularized by Deep Generative Models" Li (2021)
“End-to-End Diffusion Latent Optimization Improves Classifier Guidance” Wallace et al. (2023)
“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

You’ve trained a model. What next?

Reward Fine-tuning

tuning drastically enhances quality

Model fine-

-tuned

Fine

Pre-trained

-tuned

Fine

Pre-trained

IN

tra

iger wearing a

ictingat

An ink-and-wash artwork dep

classic cocktail is placed alongside a napkin

conductor's hat and holding onto a skateboard

Image Generation Models Using Photogenic Needles in a Haystack” Dai et al. (2024)

ing

Enhanci

“Emu

Data-driven and reward-driven fine-tuning

Pre-trained Model Curated Data set Pre-trained Model Reward Model
Fine-tuned Model Fine-tuned Model
A lot of focus put into data set Can use human preference models or

curation through human filtering. text-to-image alignment.

Reward fine-tuning by gradient descent

Initializing with a pre-trained flow modelpez Pre-trained Model Reward Model

mglx S [r(Xl)]

Optimize the reward model with RL [Black et al. 2023]
or direct gradients [Xu et al. 2023, Clark et al. 2024]. Fine-tuned Model

Sy

No fine-tuning

’\

Aesthetic reward

“Training diffusion models with reinforcement learning” Black et al. (2023)
“Imagereward: Learning and evaluating human preferences for text-to-image generation.” Xu et al. (2023)

“Directly fine-tuning diffusion models on differentiable rewards.” Clark et al. (2024)

Reward fine-tuning by gradient descent

Reyva rd=5: 4 Reward=7 Reward=9 Reward=11
(no fine-tuning) (collapsed)

Caveats
Requires using LoRA to heuristically stay close to the original model.

Still relatively easy to over-optimize reward models; “reward hacking”.

“Directly fine-tuning diffusion models on differentiable rewards.” Clark et al. (2024)

Reward fine-tuning by stochastic optimal control

Reinforcement learning from human feedback (RLHF) from the LLM literature

typically target the tllted dlstrlbutlon

Based on a pre-trained (base) model and a reward model.

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024)

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

Reward fine-tuning by stochastic optimal control

Reinforcement learning from human feedback (RLHF) from the LLM literature

typically target the tllted dlstrlbutlon

PR o PP, exp(r(X))

Based on a pre-trained (base) model and a reward model.

One idea: use a KL regularization over the path X :

max
0

= Xo~po =X, ~p(X; 1 Xo) [” (X)) = D (P (X0, | X) | 17X .1 | X))

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024)

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

Reward fine-tuning by stochastic optimal control

Reinforcement learning from human feedback (RLHF) from the LLM literature

typically target the tllted dlstrlbutlon

DA o PP exp(r(X) |

Based on a pre-trained (base) model and a reward model.

One idea: use a KL regularization over the path X :

max
0

However, since X, and X, are dependent, this results in:

p*X.1) = pbase(X(o,1))eXP(V (X)) + V(Xp)) V(x) =

“value function bias”

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024)

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

= Xo~po =X, ~p(X; 1 Xo) [” (X)) = D (P (X0, | X) | 17X .1 | X))

= e (X)) | X =]

Reward fine-tuning by stochastic optimal control

Reinforcement learning from human feedback (RLHF) from the LLM literature

typically target the tllted dlstrlbutlon

PR o PP, exp(r(X))

Based on a pre-trained (base) model and a reward model.

Intuition: Both initial noise p(X,)) and the model ub‘”e affectpb‘”e(Xl) .

[Uehara et al. 2024] proposes to learn the optimal source distribution p*(X,).

[Domingo-Enrich et al. 2024] proposes to remove the dependency between X)), X;.

pP*Xo.1y) = pbase(X(Oal))exp(r(Xl) + const.) => p*(X,) «x p?¥¢(X)exp(r(X,))

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024)

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

Reward fine-tuning by stochastic optimal control

ODE
(Pretrained)

v

Memoryless SDE

during fine-tuning.

relation between %
SDE
(Fine-tuned)

.

ODE
(Fine-tuned)

Memoryless retains 'i:‘;*“i ,#& BEECTT (Pretrained)

velocity & score.

Uniquely allowing
conversion to ODE

after fine-tuning.

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

Reward fine-tuning references

Gradient-based optimization: (Optimize the reward model)

“DPOK: Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models” Fan et al. (2023)
“Training diffusion models with reinforcement learning” Black et al. (2023)
“Imagereward: Learning and evaluating human preferences for text-to-image generation.” Xu et al. (2023)

“Directly fine-tuning diffusion models on differentiable rewards.” Clark et al. (2024)

Stochastic optimal control: (Use KL regularization & more to tilt the distribution)

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024)

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control”
Domingo-Enrich et al. (2024)

04 Generator Matching and Discrete Flows

‘ "..'.‘ o0

O R

dhd
ot IS X

Continuous Time Markov Processes

Flow Diffusion Jump
X, X, X,
CTMC
Transition kernel
Xt+h ~ pt+h\t(' ’Xt) X ']Xl
.\/: : :

Generator

Generalize the notion of velocity to arbitrary CTMP

0" order 15t order error

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587

CTMP via generator

Xt+h ~ 5Xt + hgt(° ’XI) + O(h)

Marginal probability path

Generator Matching

0\
' 15

Train a generator Sample

generating p, with from X, ~ p
po=pandp; =g

Sampling

OC-,X) + o)
Euler method: Xt+h ~ 5Xt 1 h‘SZt(?

XONP

Generator Matching

0\
' 15

Train a generator Sample

generating p, with from X, ~ p
po=pandp; =g

Building generator from conditional generators

Repeating the Kata from the continuous case.....

Kolmogorov Equation

pt|1(x | Xl) conditional probability

gt(: ,x\xl) conditional generator

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587

Building generator from conditional generators

Repeating the Kata from flows.....

pt(x) — _lem(xle) pt|1(x | Xl) conditional probability

average
Xt - X] — gt(' ,x\xl) conditional generator

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

fft(- | x) = _[gt(' 9Xt|X1)

https://arxiv.org/abs/2410.20587

The Marginalization Trick

Theorem®*: The marginal generator generates the marginal probability path.

gt(LX) = E[gt(' aXt|X1) |Xt — X] pt(x) — Elet\l(xlxl)

Train with Bregman divergence:

Z om(0) = [Et,Xl,Xt DXt(gt(- X1 X)) gte(’ ,Xt))

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587

Discrete Flow Matching

d

- State space I “: sequences of tokens

c x=0uLx% .., xhHe s

u(y, X) ..
: '/'y
‘x - (xl,xz) ..o

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)
“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997

Fa CtO rized VGIOCitieS Similar to continuous case & = R

u(x) = [utl(x), — utd(x)]

“Real life” case:
o-d -
d ~ 1000, |7 | ~ 50000 ut(-,x)EL 7 btt(-,x)ELd“/‘

def binary__search(arr, x):

start = 0
end = len(arr)-1

While performing binary search
while start <= end:
mid = (start + end) // 2

If © 1s greater °
if arr[mid] < x: o o)
start = mid + 1
_ o o o O
If © 15 smaller o o
elif arr[mid] > x: ® 6 o ?
X X
else:
return mid
return -1

u'(y', x)

“A Continuous Time Framework for Discrete Denoising Models” Campbell et al. (2022)

https://arxiv.org/abs/2205.14987

Build (factorized) velocities

p(x) = ...

uf(yi, X)=...

Mixture path

— Pl @) = (1= Dp(x) + 18(x', x])

average
— u;(yl, Xl ‘xl) —

1

1 o S
oL X)) Y #EX

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997

Discrete Flow Matching Loss

gCDFM(H) = Ly x, X, ZD (—5(Xl) uel(Xt))

p{x) (Xo<i<i

“Discrete Flow Matching” Gat el al. (2024)
"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective” Shaul et al. (2024)
“Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution” Lou et al. (2024)

https://arxiv.org/abs/2412.03487v1
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2407.15595

Example: code generation model (1.7B)

HuMANEvVALT MBPP (1-sHOT)?T
METHOD DATA
Pass@1l Pass@Ql) Pass@25 Pass@Ql Pass@Ql0) Pass@25
Autoregressive Text 1.2 3.1 4.8 0.2 1.7 3.3

FM

FM (Oracle length)

Code
Text

Code
Code

14.3 |

21.3
2.6
13.4
138.3

27.8
4.0

13.0
20.6

17.0
0.4
6.7

13.1

34.3
1.1
20.6
28.4

44.1
3.6
26.9
34.2

from typing import List

Success case

def below__zero(operations: List[int]) -> bool:

""" You're given a list of deposit and withdrawal operations

on a bank account that starts with
zero balance. Your task is to detect if at any point the balance
of account fallls below zero, and
at that point function showuld return True.
Otherwise it showuld return False.
>>> below_zero([1, 2, 3])

False

>>> below_zero([1, 2, -4, 5])

True

balance = 0

for operation in operations:
if balance + operation < 0:

return True

balance = balance + operation

return False

def solve(s):

Failure case

"""You are given a string s.

if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.

If the string contains no letters, reverse the string.

The function showuld return the resulted string.

Ezamples
solve("1234") = "4321"
solve("ab") = "AB"

solve("#a@C") = "#A@c"

if s is None:
return ""
if len(s) == 0:
return s
result string
res = str()
to lower case
s = s.lower()
for i in range(len(s)):
ch = sli]
if ch.islower():
res.append(ch)
elif ch.isupper():
res.append(ch.lower())
else:
res.append(ch)
return res

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2407.15595

Example: code generation model (1.7B)

def binary search(arr, Xx):

If x 1s greater

If x is smaller

else:

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2407.15595

OPEN PROBLEMS FOR DISCRETE FLOWS

How to go beyond the factorized velocity?
Better sampling?

How to explore the (huge) design space? Design choices:

* Process
- Marginal Path
*Corrector steps

- Models superposition

Flow Matching blueprint

Data Path design Training Sampling

’ N
@W

=

06 Demo

Flow Matching Codebase

Supports Discrete, Riemannian and Continuous FM!

Scalable training code

Discrete:

Continuous:

FineWeb

ImageNet 32, 64

i""* ':-‘_jif

. .-.- f_"

7
®

Github

https://github.com/facebookresearch/flow_matching

