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01		 Flow Matching Basics



Flow Matching at SCALE

Text-2-Video 
MovieGen, Meta

Text-2-Image 
Stable Diffusion 3

Protein Generation 
Huguet el a. 24

Robot Action Model 
Black et a. 24

https://ai.meta.com/research/movie-gen/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2405.20313
https://arxiv.org/abs/2410.24164


A scalable method to train flow generative models.   

WHAT IS FLOW MATCHING?

Train by regressing a velocity, sample by following the velocity 

HOW DOES IT WORK?



x

ℝd

The Generative Modeling  Problem



The Generative Modeling  Problem

p
q

X1 ∼ q

X0 ∼ p

x

X1 = Φ(X0)

ℝd



•Pros: efficient sampling 

•Cons: not probabilistic 

•Cons: min-max loss 

 Model

X1 = Φ(X0)

X0

X1

"Generative Adversarial Networks" Goodfellow et al. (2014)

• Direct map 

https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf


• Continuous-time Markov process 

DiffusionFlow Jump

Model

X0
X1

Xt+h ← Φt+h|t (Xt)

(Xt)0≤t≤1



DiffusionFlow Jump

Marginal probability path

(Xt)0≤t≤1(Xt)0≤t≤1(Xt)0≤t≤1

Xt ∼ pt
pt

p
q



• For now, we focus on flows… 

DiffusionFlow Jump

•Simple 

•Faster sampling 

•Exact likelihood estimator  

•Flexible, easier to build

•Larger design space  

•Slower sampling  

•ELBO  



Flow as a generative model

• Markov:   Xt+h = ψt+h|t(Xt)

Xt = ψt(X0)
Warping

X0

Source X0 ∼ p

,   t ∈ [0,1]



Flow = Velocity

ut(x)

ψt(x)

Solve ODE

•Pros: velocities are linear 

•Cons: simulate to sample
Velocity 

Flow 

Differentiate

d
dt

ψt(x) = ut(ψt(x))



Velocity  generates  if   ut pt

Xt = ψt(X0) ∼ pt



Flow Matching

Train a velocity 
generating  with 

 and 

pt
p0 = p p1 = q

Sample 
from X0 ∼ p

uθ
t

ut

uθ
t

X1



Sampling a flow model

d
dt

Xt = uθ
t (Xt)

X0 ∼ p

uθ
t

X1 ∼ q

Use any ODE numerical solver. 

One that works well: Midpoint



Flow Matching

Train a velocity 
generating  with 

 and 

pt
p0 = p p1 = q

Sample 
from X0 ∼ p

uθ
t

ut

uθ
t

X1



Simplest version of Flow Matching 

X0

X1

Xt = (1 − t)X0 + tX1

𝔼t,X0,X1
uθ

t (Xt) − (X1 − X0) 2

"Flow Matching for Generative Modeling" Lipman el al. (2022) 

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)

"Building Normalizing Flows with Stochastic Interpolants" Albergo et al. (2022)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.15571


Simplest version of Flow Matching 

𝔼t,X0,X1
uθ

t (Xt) − (X1 − X0) 2

Why does it work? 

• Build flow from conditional flows 

• Regress conditional flows 

•Arbitrary  

•Arbitrary coupling 

X0 ∼ p, X1 ∼ q

(X0, X1) ∼ π0,1 X0

X1

Xt = (1 − t)X0 + tX1



x1

Generate a single target point

Build flow from conditional flows

Xt = ψt(X0 |x1) = (1 − t)X0 + tx1

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity



x1

Generate a single target point

ut(x) = 𝔼[ut(Xt |X1) Xt = x]ut(Xt |X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

Build flow from conditional flows

Xt = ψt(X0 |x1) = (1 − t)X0 + tx1

ut(x |x1)

pt|1(x |x1) conditional probability

conditional velocity
average



The Marginalization Trick 

Theorem*: The marginal velocity generates the marginal probability path. 

                                         

ut(x) = 𝔼[ut(Xt |X1) | Xt = x] pt(x) = 𝔼X1
pt|1(x |X1)

"Flow Matching for Generative Modeling" Lipman el al. (2022) 

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)

"Building Normalizing Flows with Stochastic Interpolants" Albergo et al. (2022)

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2209.15571


Flow Matching Loss
• Flow Matching loss: 

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
uθ

t (Xt) − ut(Xt) 2ut(Xt)

ℒCFM(θ) = 𝔼t,X1,Xt
uθ

t (Xt) − ut(Xt |X1) 2ut(Xt |X1)

Theorem: Losses are equivalent,                                 

∇θℒFM(θ) = ∇θℒCFM(θ)



• Flow Matching loss: 

• Conditional Flow Matching loss:

ℒFM(θ) = 𝔼t,Xt
D(ut(Xt) , uθ

t (Xt))ut(Xt)

Generalized Flow Matching Loss

Theorem: Losses are equivalent iff  is a Bregman divergence.                                        D

∇θℒFM(θ) = ∇θℒCFM(θ)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

ℒCFM(θ) = 𝔼t,X1,Xt
D(ut(Xt |X1) , uθ

t (Xt))ut(Xt |X1)

https://arxiv.org/abs/2410.20587


Generalized Matching Loss

Theorem: Losses are equivalent iff  is a Bregman divergence.                                        D

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

∇θ 𝔼X,YD(Y, gθ(X)) = ∇θ 𝔼XD(𝔼[Y | X] , gθ(X))𝔼[Y | X]Y

https://arxiv.org/abs/2410.20587


• Optimal Transport minimizes Kinetic Energy:

How to choose ?ψt(x |x1)

≤ 𝔼X0,X1 ∫
1

0
∥ ·ψt(X0 |X1)∥2dt

ψt(x |x1) = tx1 + (1 − t)x

X0

X1

∫
1

0
𝔼Xt∼pt

∥ut(Xt)∥2dt

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)
"On Kinetic Optimal Probability Paths for Generative Models" Shaul et al. (2023)

Linear conditional flow: 

•Minimizes bound 

•Reduces KE of initial coupling  

•Exact OT for single data points  

•Not Optimal Transport                                  

(but in high dim straighter) 

https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2306.06626


Linear conditional flow

Cosine conditional flow

• Dynamic Optimal Transport minimizes Kinetic Energy:

How to choose ?ψt(x |x1)

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)
"On Kinetic Optimal Probability Paths for Generative Models" Shaul et al. (2023)

Linear conditional flow: 

•Minimizes bound 

•Reduces KE of initial coupling  

•Exact OT for single data points  

•Not Optimal Transport                                  

(but in high dim straighter) 

https://arxiv.org/abs/2209.03003
https://arxiv.org/abs/2306.06626


Flow Matching with Cond-OT

ℒCFM(θ) = 𝔼 uθ
t (Xt) − (X1 − X0) 2

ℒCFM(θ) = 𝔼 D(uθ
t (Xt) , ut(Xt |X1))ut(Xt |X1)X0

X1

Xt = (1 − t)X0 + tX1

(X1 − X0)



Affine paths

0 1

1

ψt(x |x1) = αtx1 + σtxαt σt

ℒCFM(θ) = 𝔼t,(X0,X1) D( ·αtX1 + ·σtX0, uθ
t (Xt))

Xt = αtX1 + σtX0

Singular at t = 0

Singular at t = 1

ut(x) = 𝔼[ ·αtX1 + ·σtX0 | Xt = x]
Source  predictionx0

Target  predictionx1

Velocity prediction

= atx + bt 𝔼[X0 | Xt = x]𝔼[X0 | Xt = x]
= ct 𝔼[X1 | Xt = x] + dt𝔼[X1 | Xt = x]



Gaussian paths

ℒCFM(θ) = 𝔼t,(X0,X1) D( ·αtX1 + ·σtX0, uθ
t (Xt))

Xt = αtX1 + σtX0

ut(x) = 𝔼[ ·αtX1 + ·σtX0 | Xt = x]
Source  predictionx0

Target  predictionx1

Velocity prediction

= atx + bt 𝔼[X0 | Xt = x]𝔼[X0 | Xt = x]
= ct 𝔼[X1 | Xt = x] + dt𝔼[X1 | Xt = x]

 (noise) predictionϵ

 prediction (denoiser)x1

p(x) = 𝒩(x |0 , I) π0,1(x0, x1) = p(x0)q(x1)

Probability Flow ODE

“Score-Based Generative Modeling through Stochastic Differential Equations” Song et al. 2020  

https://arxiv.org/abs/2011.13456


Affine and Gaussian paths

ℒCFM(θ) = 𝔼t,(X0,X1) D( ·αtX1 + ·σtX0, uθ
t (Xt))

Xt = αtX1 + σtX0

Affine paths Gaussian paths



Defined by any  we 

know how to generate

pt|1

• , independent coupling 

•   singularity 

•   

p = 𝒩

𝒩(αtx1, σ2
t I)

ϵ, X1, v

Diffusion models 
(deterministic)

Xt ∼ pt
pt

Defined by forward process 

(data  noise)→

Flow Matching

• arbitrary  and coupling 

•  

• ,   

p, q
pt|1

ut X0, X1

Data 

Conditional paths 

Velocity Param 

Flow, Diffusion, CTMC CTMP Process

Gaussian affine paths • , cond-OT/linear   
performance, efficiency 
ut ⇒



02	 Flow Matching Advanced Designs



Conditioning and  
Guidance Data Couplings 

Geometric  
Flow Matching 

ut(x |y = "Husky")

q(x1 |y = "Husky")

qp



Conditioning and Guidance 

p
q

X1 ∼ q
X0 ∼ p

ℝd



Conditioning and Guidance 

p
q

X0 ∼ p

ℝd

Label
Y ∈ 𝒴 ⊆ ℝk

( , )“Husky"

Labeled Data: (X1, Y) ∼ q



q(x1 |y = "Husky")

Conditioning and Guidance 

p

X0 ∼ p

ℝd

q

Label
Y ∈ 𝒴 ⊆ ℝk

( , )“Husky"

Goal: learn q(x1 |y)



Conditional Models

pt|Y(x |y) = 𝔼X1[pt|1(x |X1) |Y = y]pt|1(x |X1)

Marginal probability path

ut(x |y) = 𝔼[ut(Xt |X1) Xt = x, Y = y]ut(Xt |X1)
Marginal velocity

p

q(x1 |y = "Husky")

ut(x |y = "Husky")

pt,1|Y(x, x1 |y) = pt|1(x |x1)q(x1 |y)



Conditional Models

uθ
t (x |y = "Husky")

Train same neural network on all conditions:

uθ
t (x |y = "Corgi")

ℒCFM(θ) = 𝔼t,(X0,X1,Y)∼π0,1,Y
∥ut(Xt |X1) − uθ

t (Xt |Y)∥2

uθ
t (x |y) : [0,1] × ℝd × ℝk → ℝdwhere



Conditional Models - Examples

Class Conditioning 

( , )“Husky"

“Flow Matching for Generative Modeling” Lipman et al. (2022)
“GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models” Nichol et al. (2021)

Text-2-Image 

“A cozy living room with a 
painting of a corgi on the 
wall above a 
couch and a round coffee 
table in front of a couch 
and a vase of flowers on a 
coffee table”

[Nichol et al. ’22] 

Inverse Problems 

[Lipman et al. ’22] 

Super-resolution 
64 × 64 → 256 × 256

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2112.10741


Guidance for Score Matching

Classifier-Free Guidance ∇xlog p̃t|Y(x |y) = (1 − w)∇xlog pt(x)+w∇xlog pt|Y(x |y)

Classifier Guidance ∇xlog p̃t|Y(x |y) = ∇xlog pt(x)+w∇xlog pY|t(y |x)

Guide unconditional model with classifier to 
sample from conditional distribution



Guidance for Flow Matching

Assume a velocity field trained with Gaussian paths. 

Classifier-Free Guidance ũt(x |y) = (1 − w)ut(x)+wut(x |y)

Classifier Guidance ũt(x |y) = ut(x)+wbt ∇xlog pY|t(y |x)



Guidance for Flow Matching

Assume a velocity field trained with Gaussian paths. 

"Guided Flows for Generative Modeling and Decision Making" Zheng et al. (2023)

"Mosaic-SDF for 3D Generative Models" Yariv et al. (2023) 

"Audiobox: Unified Audio Generation with Natural Language Prompts" Vyas et al. (2023) 

"Scaling Rectified Flow Transformers for High-Resolution Image Synthesis" Esser et al. (2024)  

Flow Matching with Classifier-Free guidance:

"Movie Gen: A Cast of Media Foundation Models" Polyak et al. (2024) 

https://arxiv.org/abs/2311.13443
https://arxiv.org/abs/2312.09222
https://ai.meta.com/research/publications/audiobox-unified-audio-generation-with-natural-language-prompts/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2410.13720


Guidance for Flow Matching
U
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FM Diffusion

Ablation: text-2-video generation  
FM vs. Diffusion [Polyak et al. '24] 

"Movie Gen: A Cast of Media Foundation Models" Polyak et al. (2024) 

A girl is running across a beach 
and holding a kite. She's wearing 
jean shorts and a yellow t-shirt.  
The sun is shining down.

A sloth with pink sunglasses lays 
on a donut float in a pool. The sloth 
is holding a tropical drink. The 
world is tropical. The sunlight casts 
a shadow.

https://arxiv.org/abs/2410.13720
https://arxiv.org/abs/2410.13720


Guidance for Flow Matching

Assume a velocity field trained with Gaussian paths. 

Open Problem 

How to guide FM with non-Gaussian paths? 

“Guided Flows for Generative Modeling and Decision Making ” Zheng et al. (2023)

"Mosaic-SDF for 3D Generative Models" Yariv et al. (2023) 

"Audiobox: Unified Audio Generation with Natural Language Prompts" Vyas et al. (2023) 

"Scaling Rectified Flow Transformers for High-Resolution Image Synthesis" Esser et al. (2024)  

"Movie Gen: A Cast of Media Foundation Models" Polyak et al. (2024) 

Flow Matching with Classifier-Free guidance:

https://arxiv.org/abs/2311.13443
https://arxiv.org/abs/2312.09222
https://ai.meta.com/research/publications/audiobox-unified-audio-generation-with-natural-language-prompts/
https://arxiv.org/abs/2403.03206
https://arxiv.org/abs/2410.13720


Conditioning and  

Guidance 
Data Couplings 

Geometric  

Flow Matching 

ut(x |y = "Husky")

q(x1 |y = "Husky")

qp



qp

Until now: focused on successfully transforming  to . p q

Data Couplings

ℒCFM(θ) = 𝔼t,X1,Xt
∥ut(Xt |X1) − uθ

t (Xt)∥2ut(Xt |X1)



(X0, X1) ∼ π0,1 = p(X0)q(X1)
qp

Until now: focused on successfully transforming  to . p q

Data Couplings

ℒCFM(θ) = 𝔼t,X1,Xt
∥ut(Xt |X1) − uθ

t (Xt)∥2ut(Xt |X1)

What about dependent couplings? 

Xt = ψt(X0 |X1)



Data Couplings

Paired Data 

• Non-Gaussian source distribution 

• Alternative conditioning approach 

• Inverse problems

qp



Data Couplings

Paired Data Multisample Couplings 

• Non-Gaussian source distribution 

• Alternative conditioning approach 

• Inverse problems

qp qp



Data Couplings

Paired Data 

• Non-Gaussian source distribution 

• Alternative conditioning approach 

• Inverse problems

qp qp

Multisample Couplings 

• Applications to Optimal Transport 

• Efficiency: straighter trajectories



Data Couplings

Paired Data 

• Non-Gaussian source distribution 

• Alternative conditioning approach 

• Inverse problems

qp qp

Multisample Couplings 

• Applications to Optimal Transport 

• Efficiency: straighter trajectories



Paired Data
Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)



Paired Data

 generates ut(x |y) pt|Y(x |y)

uθ
t (x |y = )

p q(x1 |y)

Conditional Model 

Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)



Paired Data

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)
"I2SB: Image-to-Image Schrödinger Bridge" Liu et al. (2023) 

 generates ut(x |y) pt|Y(x |y)

uθ
t (x |y = )

p q(x1 |y)

Conditional Model 

qp

Dependent Couplings 

Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)

X0 = Y + ϵ ∼ p

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872


Paired Data

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)
"I2SB: Image-to-Image Schrödinger Bridge" Liu et al. (2023) 

qp

X0 = Y + ϵ ∼ p

Dependent Couplings 

Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872


Paired Data

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)
"I2SB: Image-to-Image Schrödinger Bridge" Liu et al. (2023) 

X0 = Y + ϵ ∼ p

Dependent Couplings 

Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)

Alter source distribution and 
coupling instead of adding condition 

qp

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872


Paired Data

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)
"I2SB: Image-to-Image Schrödinger Bridge" Liu et al. (2023) 

qp

X0 = Y + ϵ ∼ p

Dependent Couplings 

Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)

(X0, X1, Y) ∼ π0|1(x0 |x1, y)q(x1, y)

ℒCFM(θ) = 𝔼t,X1,Xt
∥ut(Xt |X1) − uθ

t (Xt)∥2ut(Xt |X1)

Xt = ψt(X0 |X1)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872


Paired Data

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)
"I2SB: Image-to-Image Schrödinger Bridge" Liu et al. (2023) 

qp

X0 = Y + ϵ ∼ p

Dependent Couplings 

Labeled Data: (X1, Y) ∼ q Goal: learn q(x1 |y)

(X0, X1, Y) ∼ π0|1(x0 |x1, y)q(x1, y)

ℒCFM(θ) = 𝔼t,X1,Xt
∥ut(Xt |X1) − uθ

t (Xt)∥2ut(Xt |X1)

Xt = ψt(X0 |X1)

 ψ1(X0 |Y = y) ∼ q(x1 |y)

https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2302.05872


Paired Data

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)

Super-resolution 64 × 64 → 256 × 256

Infilling

https://arxiv.org/abs/2310.03725


Data Couplings

Paired Data 

• Non-Gaussian source distribution 

• Alternative conditioning approach 

• Inverse problems

qp qp

Multisample Couplings 

• Applications to Optimal Transport 

• Efficiency: straighter trajectories



Multisample Couplings

qp

Given uncoupled source and target distributions, 

can we build a coupling to induce straighter paths? 

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

ℒCFM(θ) = 𝔼t,X1,Xt
∥ut(Xt |X1) − uθ

t (Xt)∥2ut(Xt |X1)

(X0, X1) ∼ π0,1 = ?

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

qp

"Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow" Liu et al. (2022)

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Marginal  with cond-OT FM and  ut π0,1

Kinetic Energy Coupling cost 

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2209.03003


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

qp
Use mini batch optimal transport couplings

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

Use mini batch optimal transport couplings

p q

Sample   X(i)
0 ∼ p, X(i)

1 ∼ q, i ∈ [k]

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

Use mini batch optimal transport couplings

p q

Sample   X(i)
0 ∼ p, X(i)

1 ∼ q, i ∈ [k]

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

Use mini batch optimal transport couplings

qpp q

Sample   X(i)
0 ∼ p, X(i)

1 ∼ q, i ∈ [k] πk = argminπ∈Bk
𝔼π∥X(i)

0 − X( j)
1 ∥2

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

Use mini batch optimal transport couplings

qp p qp q

Sample   X(i)
0 ∼ p, X(i)

1 ∼ q, i ∈ [k] Sample   (X(i)
0 , X( j)

1 ), (i, j) ∼ πk

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

πk = argminπ∈Bk
𝔼π∥X(i)

0 − X( j)
1 ∥2

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

When  k = 1 → π0,1 = p(X0)q(X1)

qp p qp q

Sample   X(i)
0 ∼ p, X(i)

1 ∼ q, i ∈ [k] Sample   (X(i)
0 , X( j)

1 ), (i, j) ∼ πk

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

πk = argminπ∈Bk
𝔼π∥X(i)

0 − X( j)
1 ∥2

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

When ,  generates the OT map k → ∞ ut

qp p qp q

Sample   X(i)
0 ∼ p, X(i)

1 ∼ q, i ∈ [k] Sample   (X(i)
0 , X( j)

1 ), (i, j) ∼ πk

KE(ut) ≤ 𝔼π0,1
∥X1 − X0∥2

Kinetic Energy Coupling cost 

πk = argminπ∈Bk
𝔼π∥X(i)

0 − X( j)
1 ∥2

FM with cond-OT is not marginal OT! 

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482


Multisample Couplings

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023) 
"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023) 

[Pooladian et al. '23] 

Couplings 

-FM Coupling

πk
0,1

πk
0,1

• High dimensions - minor improvement in 
sampling speed compared to tailored 
samplers.  

• Shows promise in lower dimensional 
problems for scientific applications              
(e.g. protein backbone design [Bose et al. '23]).

"SE(3)-Stochastic Flow Matching for Protein Backbone Generation" Bose et al. (2023)

https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2310.02391
https://arxiv.org/abs/2310.02391


Data Couplings

"I2SB: Image-to-Image Schrödinger Bridge" Liu et al. (2023) 

"Stochastic interpolants with data-dependent couplings" Albergo et al. (2024)  

"Simulation-Free Training of Neural ODEs on Paired Data" Kim et al. (2024)  

Paired data:

"Multisample Flow Matching: Straightening Flows with Minibatch Couplings" Pooladian et al. (2023)

"Improving and generalizing flow-based generative models with minibatch optimal transport" Tong et al. (2023)

"SE(3)-Stochastic Flow Matching for Protein Backbone Generation" Bose et al. (2023) 

Multisample couplings:

"Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation" Huguet et al. (2024) 

https://arxiv.org/abs/2302.05872
https://arxiv.org/abs/2310.03725
https://arxiv.org/abs/2410.22918
https://arxiv.org/abs/2304.14772
https://arxiv.org/abs/2302.00482
https://arxiv.org/abs/2310.02391
https://arxiv.org/abs/2405.20313


Conditioning and  

Guidance 
Data Couplings 

Geometric  

Flow Matching 

ut(x |y = "Husky")

q(x1 |y = "Husky")

qp



Geometric Flow Matching

Data with Symmetries Riemannian Manifolds 

• Equivariant flows  invariant densities  

• Alignment couplings 

→ • Simulation free on simple manifolds 

• General geometries



Geometric Flow Matching

Data with Symmetries Riemannian Manifolds 

• Equivariant flows  invariant densities  

• Alignment couplings 

→ • Simulation free on simple manifolds 

• General geometries



Data with Symmetries

Data  

• Sets 

• Graphs 

• Hyper Graphs 

Atom  
Type

3D 
Positions

x ∈ ℝn×d



Data with Symmetries

Data  

• Sets 

• Graphs 

• Hyper Graphs 

x ∈ ℝn×d

P
erm

ute



Data with Symmetries

Data  

• Sets 

• Graphs 

• Hyper Graphs 

Symmetries 

•  - permutations 

•  - rotations 

•  - rigid motions 
(rotations, reflections, translations)

Sn

SO(n)
SE(3)

x ∈ ℝn×d

Rotate

Symmetries are transformations under 
which an object is invariant.  



Invariant densities

Symmetry Group  G

x

Example: Reflection 



Invariant densities

Symmetry Group  G

x

Example: Reflection 

g ⋅ x G = {g, e}



p

q

Invariant densities

x

g ⋅ x

Invariant 

Density
q(g ⋅ x) = q(x)

Symmetry Group  G

Example: Reflection 

 G = {g, e}



Equivariant Flows

Invariant 

Density
q(g ⋅ x) = q(x)

Symmetry Group  G

Example: Reflection 

p

x

g ⋅ x

q

 G = {g, e}



pt(g ⋅ x) = pt(x)
Invariant probability path 

Example: Reflection 

p

x

g ⋅ x

q

Equivariant Flows



pt(g ⋅ x) = pt(x)
Invariant probability path 

Example: Reflection 

p

x

g ⋅ x

q

Equivariant Flows



ut(g ⋅ x) = g ⋅ ut(x)

ψt(g ⋅ x) = g ⋅ ψt(x)

Solve ODE

Equivariant Velocity 

Equivariant Flow 

Differentiate

pt(g ⋅ x) = pt(x)
Invariant probability path 

Example: Reflection 

p

x

g ⋅ x

q

Equivariant Flows

ut(g ⋅ x) = ?

ut(x)

"Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities" Köhler et al. (2020) 

https://arxiv.org/abs/2006.02425


ut(g ⋅ x) = g ⋅ ut(x)

ψt(g ⋅ x) = g ⋅ ψt(x)

Solve ODE

Equivariant Velocity 

Equivariant Flow 

Differentiate

pt(g ⋅ x) = pt(x)
Invariant probability path 

Example: Reflection 

p

x

g ⋅ x

q

Equivariant Flows

g ⋅ ut(x)

ut(x)

"Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities" Köhler et al. (2020) 

https://arxiv.org/abs/2006.02425


pt(g ⋅ x) = pt(x)
Invariant probability path 

Example: Reflection 

p

x

g ⋅ x

q

Equivariant Flow Matching

g ⋅ ut(x)

ut(x)

Equivariant 
Velocity uθ

t (g ⋅ x) = g ⋅ uθ
t (x)

ℒCFM(θ) = 𝔼t,X1,Xt
∥ut(Xt |X1) − uθ

t (Xt)∥2ut(Xt |X1)

Train with CFM:

(X0, X1) ∼ π0,1 = p(X0)q(X1)

"Equivariant flow matching" Klein et al. (2023) 
"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023) 

https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168


Equivariant Flow Matching

Equivariant 
Velocity uθ

t (g ⋅ x) = g ⋅ uθ
t (x)

Example: Reflection 

p

X1

g ⋅ X1

q

X0
ℒCFM(θ) = 𝔼t,X1,Xt

∥ut(Xt |X1) − uθ
t (Xt)∥2ut(Xt |X1)

Train with CFM:

(X0, X1) ∼ π0,1 = p(X0)q(X1)

"Equivariant flow matching" Klein et al. (2023) 
"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023) 

https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168


Equivariant Flow Matching

Equivariant 
Velocity uθ

t (g ⋅ x) = g ⋅ uθ
t (x)

Example: Reflection 

p

X1

g ⋅ X1

q

X0
ℒCFM(θ) = 𝔼t,X1,Xt

∥ut(Xt |X1) − uθ
t (Xt)∥2ut(Xt |X1)

Train with CFM:

(X0, X1) ∼ π0,1 = p(X0)q(X1)

Coupling disregards symmetry Curved trajectories



Alignment Couplings

Equivariant 
Velocity uθ

t (g ⋅ x) = g ⋅ uθ
t (x)

Example: Reflection 

p

X1

g ⋅ X1

q

X0
ℒCFM(θ) = 𝔼t,X1,Xt

∥ut(Xt |X1) − uθ
t (Xt)∥2ut(Xt |X1)

Train with CFM:

(X0, X1) ∼ π0,1
Align

"Equivariant flow matching" Klein et al. (2023) 
"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023) 

https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168


Equivariant Flow Matching

"Fast Point Cloud Generation with Straight Flows" Wu et al. (2022) 
"Equivariant flow matching" Klein et al. (2023) 

"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023) 

https://arxiv.org/abs/2212.01747
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168


Geometric Flow Matching

Data with Symmetries Riemannian Manifolds 

• Equivariant flows  invariant densities  

• Alignment couplings 

→ • Simulation free on simple manifolds 

• General geometries



Generative Modeling on Manifolds

Scientific Data

SE(3) invariant  
Protein structure generation

Robotics

SO(2) invariant  
Block stacking

Climate Modeling

Spherical Geometry  𝕊2

"Planning with Diffusion for Flexible Behavior Synthesis" Janner et al. (2022) 
"Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation" Huguet et al. (2024)

https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2405.20313


Need to re-define the  

geometric structures  

we have in Euclidean space.



Riemannian Manifolds

Smooth
Global differential  

structure



Riemannian Manifolds

Smooth
Global differential  

structure



Riemannian Manifolds

Smooth
Global differential  

structure

T x

 u, v ∈ Tx

Riemannian  

Metric
 ⟨u, v⟩g

 +

Riemannian Manifold

u
v



Flows on Manifolds

T x

ut(x)

ψt(x)

Solve ODE

Velocity 

Flow 

Differentiate

ut(x)

∈ Tx



Flows on Manifolds

ut(x)

ψt(x)

Solve ODE

Velocity 

Flow 

Differentiate

∈ Tx

T x



Riemannian Flow Matching

ℒRFM(θ) = 𝔼t,Xt
uθ

t (Xt) − ut(Xt) 2
gut(Xt)

• Riemannian Flow Matching loss:

Riemanninan  

Metric

"Flow Matching on General Geometries" Chen & Lipman (2023) 

https://arxiv.org/abs/2302.03660


Riemannian Flow Matching

ℒRFM(θ) = 𝔼t,Xt
uθ

t (Xt) − ut(Xt) 2
gut(Xt)

• Riemannian Flow Matching loss:

• Riemannian Conditional Flow Matching loss:

ℒRCFM(θ) = 𝔼t,X1,Xt
uθ

t (Xt) − ut(Xt |X1) 2
gut(Xt |X1)

Theorem: Losses are equivalent,                                 

∇θℒRFM(θ) = ∇θℒRCFM(θ)
"Flow Matching on General Geometries" Chen & Lipman (2023) 

https://arxiv.org/abs/2302.03660


Conditional Flows - Simple Geometries

Straight lines Geodesics 

Closed-form geodesic

ψt(x0 |x1) = expx0
(κ(t)logx0

(x1)), t ∈ [0,1]

For simple manifolds (e.g. Euclidean, sphere, torus, hyperbolic):

"Flow Matching on General Geometries" Chen & Lipman (2023) 

Scheduler : κ(t) κ(0) = 0 , κ(1) = 1

Simulation Free!

https://arxiv.org/abs/2302.03660


Conditional Flows - General Geometries

Geodesics can be hard to compute

"Flow Matching on General Geometries" Chen & Lipman (2023) 

Concentrate probability at boundary

https://arxiv.org/abs/2302.03660


Conditional Flows - General Geometries

d(ψt(x0 |x1), x1) = κ̄(t)d(x0, x1)

"Flow Matching on General Geometries" Chen & Lipman (2023) 

Choose a premetric satisfying:

1. Non-negative: . 

2. Positive:  iff . 

3. Non-degenerate:  iff .

d(x, y) ≥ 0
d(x, y) = 0 x = y

∇d(x, y) ≠ 0 x ≠ y

Build conditional flow satisfying:

Scheduler κ̄(t) = 1 − κ(t)

https://arxiv.org/abs/2302.03660


Conditional Flows - General Geometries

d(ψt(x0 |x1), x1) = κ̄(t)d(x0, x1)

"Flow Matching on General Geometries" Chen & Lipman (2023) 

Build conditional flow satisfying:

ut(x |x1) =
d log κ̄(t)

dt
d(x, x1)

∇d(x, x1)
∥∇d(x, x1)∥2

g

Requires simulation

https://arxiv.org/abs/2302.03660


Conditional Flows - General Geometries

d(ψt(x0 |x1), x1) = κ̄(t)d(x0, x1)

"Flow Matching on General Geometries" Chen & Lipman (2023) 

Build conditional flow satisfying:

ut(x |x1) =
d log κ̄(t)

dt
d(x, x1)

∇d(x, x1)
∥∇d(x, x1)∥2

g

Requires simulation

https://arxiv.org/abs/2302.03660


Riemannian Flow vs. Score Matching

"Flow Matching on General Geometries" Chen & Lipman (2023) 
"Riemannian Score-Based Generative Modelling" De Bortoli et al. (2022) 

Riemannian Flow Matching Riemannian Score Matching

Simple manifolds Simulation Free!

Solve ODEGeneral manifolds

Solve SDE

Solve SDE

Regression target ut(Xt |X1) ∇log pt(x |x0)

https://arxiv.org/abs/2302.03660
https://proceedings.neurips.cc/paper_files/paper/2022/hash/105112d52254f86d5854f3da734a52b4-Abstract-Conference.html


Riemannian Flow vs. Score Matching

"Flow Matching on General Geometries" Chen & Lipman (2023) 
"Riemannian Score-Based Generative Modelling" De Bortoli et al. (2022)

https://arxiv.org/abs/2302.03660
https://proceedings.neurips.cc/paper_files/paper/2022/hash/105112d52254f86d5854f3da734a52b4-Abstract-Conference.html


Geometric Flow Matching

"Flow Matching on General Geometries" Chen & Lipman (2023)  

"SE(3)-Stochastic Flow Matching for Protein Backbone Generation" Bose et al. (2023)

"Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation" Huguet et al. (2024) 

"FlowMM: Generating Materials with Riemannian Flow Matching" Miller et al. (2024)  

"FlowLLM: Flow Matching for Material Generation with Large Language Models as Base Distributions" Sriram et al. (2024) 

"Metric Flow Matching for Smooth Interpolations on the Data Manifold" Kapuśniak et al. (2024)  

Riemannian Flow Matching:

Equivariant Flow Matching:

"Fast Point Cloud Generation with Straight Flows" Wu et al. (2022) 

"Equivariant flow matching" Klein et al. (2023) 

"Equivariant Flow Matching with Hybrid Probability Transport" Song et al. (2023) 

"Mosaic-SDF for 3D Generative Models" Yariv et al. (2023) 

 

https://arxiv.org/abs/2302.03660
https://arxiv.org/abs/2310.02391
https://arxiv.org/abs/2405.20313
https://arxiv.org/abs/2406.04713
https://arxiv.org/abs/2410.23405
https://arxiv.org/abs/2405.14780
https://arxiv.org/abs/2212.01747
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2312.07168
https://arxiv.org/abs/2312.09222
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You’ve trained a model. What next?

Faster Sampling Inverse Problems 
(Training-Free) Reward Fine-tuning



Faster Sampling Reward Fine-tuning

You’ve trained a model. What next?

Inverse Problems 
(Training-Free)



Faster sampling by straightening the flow

“Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow” Liu et al. (2022) 

“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2022)

Rectified Flow refits using the pre-trained (noise, data) coupling.  

Leads to straight flows.

ℒ(θ) = 𝔼t,(X0,X1)∼π0,1
∥uθ

t (Xt) − (X1 − X0)∥2
πθ

0,1

1-Rectified Flow 

(Flow Matching)
2-Rectified Flow

ψ1(X0)X0



“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2022)

Faster sampling by straightening the flow



“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2022)

Enforcing straightness restricts the model. Often a slight drop in sample quality.

Faster sampling by straightening the flow

Caveat



“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Velocity is defined as a limiting quantity:

  Xt+h ≈ Xt + hut(Xt) ut(x) := lim
h→0

Xt+h − Xt

h
⟹

 Xt+h := Xt + hst(Xt, h)

Euler method is an approximation

Note:   lim
h→0

st(x, h) = ut(x)

Faster sampling by self-consistency loss

Instead, define shortcuts with step size  as additional argument:h



“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Velocity is defined as a limiting quantity:

  Xt+h ≈ Xt + hut(Xt) ut(x) := lim
h→0

Xt+h − Xt

h
⟹

 Xt+h := Xt + hst(Xt, h)

Euler method is an approximation

                      

          

Xt+2h = Xt+h + hst(Xt+h, h)
= Xt + hst(Xt, h) + hst(Xt+h, h)

Shortcuts satisfy a consistency property:

= Xt + 2hst(Xt,2h)

Faster sampling by self-consistency loss

two steps
one step

Instead, define shortcuts with step size  as additional argument:h

Note:   lim
h→0

st(x, h) = ut(x)



“One Step Diffusion via Shortcut Models” Frans et al. (2024)

st(Xt, h)/2 + st(Xt+h, h)/2

Shortcuts satisfy a consistency property:

= st(Xt,2h)

Shortcut models are trained by a mix of Flow Matching & consistency:

ℒ(θ) = 𝔼t,h,X0,X1[∥st(Xt,0) − (X1 − X0)∥2 + ∥st(Xt,2h) − starget∥2]
starget = st(Xt, h)/2 + st(Xt+h, h)/2where

Flow Matching Self-consistency

Faster sampling by self-consistency loss



“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Faster sampling by self-consistency loss



“One Step Diffusion via Shortcut Models” Frans et al. (2024)

Shortcuts with  do not work with classifier-free guidance (CFG).h > 0

CFG weight can & must be specified before training.

Caveats

Faster sampling by self-consistency loss



Faster sampling by only modifying the solver



Faster sampling by only modifying the solver

“Elucidating the design space of diffusion-based generative models” Karras et al. (2023) 

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023) 

Xt = αtX1 + σtX0 X̄t = ᾱtX1 + σ̄tX0

Can adapt pre-trained models to different schedulers.

From original scheduler: To modified scheduler:



Faster sampling by only modifying the solver

“Elucidating the design space of diffusion-based generative models” Karras et al. (2023) 

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023) 

Xt = αtX1 + σtX0 X̄t = ᾱtX1 + σ̄tX0

Can adapt pre-trained models to different schedulers.

From original scheduler: To modified scheduler:

Related by a scaling & time transformation:

sr = σ̄r /σtr

tr = SNR−1(SNR(r))
where

 X̄r = sr Xtr

Note:    coupling does not change(X0, X1)



“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023) 

“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

Standard 

solver

Modify  

from 1 to 10

σ0

Optimized

Ground truth 

reference

Higher NFE / compute

Faster sampling by only modifying the solver

“a teddy bear sitting in a fake bath tub with a rubber ducky””



“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023) 

“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

Parameterize solver and optimize.

Can be interpreted as finding 

best scheduler + more.

Bespoke solvers:

Standard 

solver

Modify  

from 1 to 10

σ0

Optimized

Ground truth 

reference

Higher NFE / compute

Faster sampling by only modifying the solver

“a teddy bear sitting in a fake bath tub with a rubber ducky””

Decouples model & solver.  

Model is left unchanged.

Solver consistency: sample quality 

is retained as NFE .→ ∞



“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023) 

“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

Optimized on 
CIFAR10

Bespoke solvers

Bespoke solvers can transfer across 
different data sets and resolutions.

ImageNet 64

However, does not reach distillation 
performance at extremely low NFEs.

Faster sampling by only modifying the solver

Parameterize solver and optimize.

Bespoke solvers:

Decouples model & solver.  

Model is left unchanged.

Caveat



“Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow” Liu et al. (2022) 

“InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation” Liu et al. (2024) 

“Improving the Training of Rectified Flows” Lee et al. (2024)

Faster sampling references

Rectified flows:

Consistency & shortcut models:

Trained & bespoke solvers:

“Consistency Models” Song et al. (2023) 

“Improved Techniques for Training Consistency Models” Song & Dhariwal (2023) 

“One Step Diffusion via Shortcut Models” Frans et al. (2024)

“DPM-Solver-v3: Improved Diffusion ODE Solver with Empirical Model Statistics” Zheng et al. (2023) 

“Bespoke Solvers for Generative Flow Models” Shaul et al. (2023) 

“Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models” Shaul et al. (2024)

(Straighten the flow using the pre-trained coupling)

(Predict future trajectories without straightening)

(Optimize transferable solvers without modifying the model)

https://arxiv.org/search/cs?searchtype=author&query=Dhariwal,+P


Faster Sampling Reward Fine-tuning

You’ve trained a model. What next?

Inverse Problems 
(Training-Free)



Examples of inverse problems

“Audiobox: Unified Audio Generation with Natural Language Prompts” Vyas et al. (2023) 

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023) 

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

JP
E

G
S

up
er

-r
es
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fi

ll Text-conditional audio infilling

y x1

Easy

Hard



Solving inverse problems by posterior inference

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023) 

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Formulate as posterior inference given a pretrained model and a known corruption:

   p1|Y(x1 |y) ∝ p1(x1) pY|1(y |x1)



Solving inverse problems by posterior inference

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023) 

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Formulate as posterior inference given a pretrained model and a known corruption:

   p1|Y(x1 |y) ∝ p1(x1) pY|1(y |x1)
Velocity that generates the posterior can be constructed via “conditional guidance”:

ut(x |y) = ut(x) + σ2
t

d log(αt /σt)
dt

∇xt
log pY|t(y |xt)
(unknown)



Solving inverse problems by posterior inference

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023) 

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Formulate as posterior inference given a pretrained model and a known corruption:

   p1|Y(x1 |y) ∝ p1(x1) pY|1(y |x1)
Velocity that generates the posterior can be constructed via “conditional guidance”:

ut(x |y) = ut(x) + σ2
t

d log(αt /σt)
dt

∇xt
log pY|t(y |xt)
(unknown)

One idea is to replace the unknown score function with a heuristic approximation:

ut(x |y) ≈ ut(x) + σ2
t

d log(αt /σt)
dt

∇xt
log papprox

Y|t (y |xt)



Solving inverse problems by posterior inference

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023) 

“Training-free Linear Image Inverses via Flows” Pokle et al. (2024)

Typically requires known linear corruption and Gaussian prob path.

Can randomly fail due to the heuristic sampling.

Failure cases

Caveats



Solving inverse problems by optimizing the source

1. Don’t want to rely on likelihoods / densities. 

2.Have observation  being nonlinear in .y x1

Model density is unreliable

Higher density

“Do Deep Generative Models Know What They Don't Know?” Nalisnick et al. (2018) 

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Latent FM decoders are nonlinear

Decoder

y = f(x1) = corruption(decoder(x1)) higher chance of being sampled≠



Solving inverse problems by optimizing the source

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Inverse problems often formulated as optimization:

min
x1

L(x1) e.g.,        L(x) = ∥ f(x) − y ∥2

Corruption fn. Corrupted obs.



Solving inverse problems by optimizing the source

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Simple idea of using a pre-trained flow  as a diffeomorphism:ψθ
1

Inverse problems often formulated as optimization:

min
x1

L(x1) e.g.,        L(x) = ∥ f(x) − y ∥2

Corruption fn. Corrupted obs.

min L(ψθ
1(x0))

(smooth invertible fn.)

and optimize the source variable .x0

x0



Solving inverse problems by optimizing the source

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Simple idea of using a pre-trained flow  as a diffeomorphism:ψθ
1

Inverse problems often formulated as optimization:

min
x1

L(x1) e.g.,        L(x) = ∥ f(x) − y ∥2

Corruption fn. Corrupted obs.

min L(ψθ
1(x0))

(smooth invertible fn.)

and optimize the source variable .x0

x0

90% 
masked



Solving inverse problems by optimizing the source

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Theory: Jacobian of the flow  

projects the gradient along the 

data manifold.

∇x0
ψθ

1

min L(ψθ
1(x0))x0

Intuition: Diffeomorphism 

enables mode hopping!

x0 ψθ
1(x0)



Solving inverse problems by optimizing the source

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

Works with latent text-conditional models.

Requires multiple simulations and differentiation of .ψθ
1Caveat:

Simplicity allows application in multiple domains.

Conditioned on molecular properties

Conditioned on text & corrupted audioConditioned on text & corrupted image



Inverse problems references

Online sampling methods inspired by posterior inference:

Source point optimization:

“Differentiable Gaussianization Layers for Inverse Problems Regularized by Deep Generative Models" Li (2021) 

“End-to-End Diffusion Latent Optimization Improves Classifier Guidance” Wallace et al. (2023) 

“D-Flow: Differentiating through Flows for Controlled Generation” Ben-Hamu et al. (2024)

“Diffusion Posterior Sampling for General Noisy Inverse Problems” Chung et al. (2022) 

“A Variational Perspective on Solving Inverse Problems with Diffusion Models” Mardani et al. (2023) 

“Pseudoinverse-Guided Diffusion Models for Inverse Problems” Song et al. (2023)  

“Training-free Linear Image Inverses via Flows” Pokle et al. (2023) 

“Practical and Asymptotically Exact Conditional Sampling in Diffusion Models” Wu et al. (2023) 

“Monte Carlo guided Diffusion for Bayesian linear inverse problems” Cardoso et al. (2023)

(Modify sampling procedure)

(Use pre-trained flow to transform optimization landscape)



Faster Sampling Reward Fine-tuning

You’ve trained a model. What next?

Inverse Problems 
(Training-Free)



Model fine-tuning drastically enhances quality

“Emu: Enhancing Image Generation Models Using Photogenic Needles in a Haystack” Dai et al. (2024)

Pre-trained Fine-tuned Pre-trained Fine-tuned



Data-driven and reward-driven fine-tuning

Pre-trained Model Curated Data set

Fine-tuned Model

Pre-trained Model Reward Model

Fine-tuned Model

A lot of focus put into data set 
curation through human filtering.

Can use human preference models or 

text-to-image alignment.

+ +



Reward fine-tuning by gradient descent

Pre-trained Model Reward Model

Fine-tuned Model

+

max
θ

𝔼X1∼pθ [r(X1)]
Initializing with a pre-trained flow model :pθ

“Training diffusion models with reinforcement learning” Black et al. (2023) 

“Imagereward: Learning and evaluating human preferences for text-to-image generation.” Xu et al. (2023) 

“Directly fine-tuning diffusion models on differentiable rewards.” Clark et al. (2024)

Optimize the reward model with RL [Black et al. 2023] 

or direct gradients [Xu et al. 2023, Clark et al. 2024].

“A painting of a deer” [Clark et al. 2024]



Reward fine-tuning by gradient descent

“Directly fine-tuning diffusion models on differentiable rewards.” Clark et al. (2024)

Requires using LoRA to heuristically stay close to the original model.
Caveats

Still relatively easy to over-optimize reward models; “reward hacking”.



Reward fine-tuning by stochastic optimal control

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024) 

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

Reinforcement learning from human feedback (RLHF) from the LLM literature 

typically target the tilted distribution:

Based on a pre-trained (base) model and a reward model.

 p*(X1) ∝ pbase(X1) exp(r(X1))



Reward fine-tuning by stochastic optimal control

Reinforcement learning from human feedback (RLHF) from the LLM literature 

typically target the tilted distribution:

Based on a pre-trained (base) model and a reward model.

 p*(X1) ∝ pbase(X1) exp(r(X1))

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024) 

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

max
θ

𝔼X0∼p0
𝔼X0:1∼pθ(X1|X0) [r(X1) − DKL(pθ(X(0,1) |X0) | |pbase(X(0,1) |X0))]

One idea: use a KL regularization over the path :X(0,1)



max
θ

𝔼X0∼p0
𝔼X0:1∼pθ(X1|X0) [r(X1) − DKL(pθ(X(0,1) |X0) | |pbase(X(0,1) |X0))]

Reward fine-tuning by stochastic optimal control

Reinforcement learning from human feedback (RLHF) from the LLM literature 

typically target the tilted distribution:

Based on a pre-trained (base) model and a reward model.

 p*(X1) ∝ pbase(X1) exp(r(X1))

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024) 

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

One idea: use a KL regularization over the path :X(0,1)

However, since  and  are dependent, this results in:X0 X1

p*(X(0,1)) = pbase(X(0,1))exp(r(X1) + V(X0))
“value function bias”

V(x) = 𝔼pbase[r(X1) |X0 = x]



Reward fine-tuning by stochastic optimal control

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024) 

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

Intuition: Both initial noise  and the model  affect p(X0) ubase
t pbase(X1) .

[Uehara et al. 2024] proposes to learn the optimal source distribution .p*(X0)
[Domingo-Enrich et al. 2024] proposes to remove the dependency between .X0, X1

Reinforcement learning from human feedback (RLHF) from the LLM literature 

typically target the tilted distribution:

Based on a pre-trained (base) model and a reward model.

 p*(X1) ∝ pbase(X1) exp(r(X1))

  p*(X(0,1)) = pbase(X(0,1))exp(r(X1) + const.) ⟹ p*(X1) ∝ pbase(X1)exp(r(X1))



Reward fine-tuning by stochastic optimal control

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” Domingo-Enrich et al. (2024)

ODE  

(Pretrained)

SDE  

(Pretrained)

SDE  

(Fine-tuned)

Uniquely allowing 

conversion to ODE 
after fine-tuning.

Memoryless retains 

relation between 

velocity & score.

ODE  

(Fine-tuned)

Memoryless SDE 

during fine-tuning.



Reward fine-tuning references

Gradient-based optimization:

Stochastic optimal control:

“Fine-tuning of continuous-time diffusion models as entropy regularized control” Uehara et al. (2024) 

“Adjoint matching: Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control” 
Domingo-Enrich et al. (2024)

“DPOK: Reinforcement Learning for Fine-tuning Text-to-Image Diffusion Models” Fan et al. (2023) 

“Training diffusion models with reinforcement learning” Black et al. (2023) 

“Imagereward: Learning and evaluating human preferences for text-to-image generation.” Xu et al. (2023) 

“Directly fine-tuning diffusion models on differentiable rewards.” Clark et al. (2024) 

(Optimize the reward model)

(Use KL regularization & more to tilt the distribution)



04	 Generator Matching and Discrete Flows



Flow

(Xt)0≤t≤1



X0 ∼ p

Xt+h ∼ pt+h|t ( ⋅ , Xt)pt+h|t

Transition kernel

Continuous Time Markov Processes

DiffusionFlow Jump

𝒮 = ℝd

𝒮 = 𝒟

CTMC



Generator
Generalize the notion of velocity to arbitrary CTMP 

ℒt( ⋅ , x)

pt+h|t ( ⋅ , x) = δx + h
d
dh h=0

pt+h|t( ⋅ , x) + o(h)

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

 order1st order0th error

https://arxiv.org/abs/2410.20587


CTMP via generator

X0 ∼ p

Xt

X0

X1Xt+h

Xt+h ∼ δXt
+ hℒt( ⋅ , Xt) + o(h)Xt+h XtXt



Marginal probability path

Xt ∼ pt
pt

(Xt)0≤t≤1
Xt

X0

X1



Generator Matching 

Sample 

from X0 ∼ p

Train a generator 
generating  with 

 and 

pt
p0 = p p1 = q

ℒθ
t

ℒt

ℒθ
t

X1

ℒθ
t



Sampling

X0 ∼ p

Xt

X0

X1Xt+h

Euler method: Xt+h ∼ δXt
+ hℒθ

t ( ⋅ , Xt) + o(h)Xt+h XtXt



Generator Matching 

Sample 

from X0 ∼ p

Train a generator 
generating  with 

 and 

pt
p0 = p p1 = q

ℒθ
t

ℒt

ℒθ
t

X1

ℒθ
t



Building generator from conditional generators
Repeating the Kata from the continuous case….. 

ℒt( ⋅ , x |x1)

pt|1(x |x1)

x1

conditional probability

conditional generator
"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

Kolmogorov Equation

https://arxiv.org/abs/2410.20587


Building generator from conditional generators
Repeating the Kata from flows….. 

ℒt( ⋅ |x) = 𝔼[ℒt( ⋅ , Xt |X1) Xt = x]ℒt( ⋅ , Xt |X1)

pt(x) = 𝔼X1
pt|1(x |X1)pt|1(x |X1)

ℒt( ⋅ , x |x1)

pt|1(x |x1)

x1

conditional probability

conditional generator
average

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587


The Marginalization Trick 

Theorem*: The marginal generator generates the marginal probability path. 

                                         

ℒt( ⋅ , x) = 𝔼[ℒt( ⋅ , Xt |X1) | Xt = x] pt(x) = 𝔼X1
pt|1(x |X1)

ℒCGM(θ) = 𝔼t,X1,Xt
DXt(ℒt( ⋅ , Xt |X1), ℒθ

t ( ⋅ , Xt))ℒt( ⋅ , Xt |X1)
Train with Bregman divergence: 

                                         

"Generator Matching: Generative modeling with arbitrary Markov processes" Holderrieth et al. (2024)

https://arxiv.org/abs/2410.20587


Discrete Flow Matching

• State space : sequences of tokens 

•  

𝒯d

x = (x1, x2, …, xd) ∈ 𝒮

x = (x1, x2)

y

p q

“Discrete Flow Matching” Gat el al. (2024)

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

pt+h|t(y, x) = δ(y, x) + h ut(y, x) + o(h)
ut(y, x)

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997


Factorized velocities

ut( ⋅ , x) ∈ ℝ𝒯d

y

x

ut(x) = [u1
t (x), …, ud

t (x)]
Similar to continuous case :𝒮 = ℝd

“Real life” case: 

d ≈ 1000, |𝒯 | ≈ 50000

“A Continuous Time Framework for Discrete Denoising Models” Campbell et al. (2022) 

ui
t(yi, x)

ut( ⋅ , x) ∈ ℝd|𝒯|

x

https://arxiv.org/abs/2205.14987


Build (factorized) velocities

x1

ui
t(yi, x |x0, x1) =

1
1 − t [δ(xi

1, xi) − δ(yi, xi)]

pt(x) = …

ui
t(yi, x) = … ui

t(yi, xi |x1) =
1

1 − t
δ(yi, xi

1) yi ≠ xi

pi
t|1(x

i |x1) = (1 − t)p(xi) + tδ(xi, xi
1)

Xi = {xi
0 with prob 1 − t

xi
1 with prob t

“Discrete Flow Matching” Gat el al. (2024)

“Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design” Campbell et al. (2024)

average

Mixture path

https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2402.04997


Discrete Flow Matching Loss

pt(x) (Xt)0≤t≤1

ℒCDFM(θ) = 𝔼t,X1,Xt ∑
i

DXt( 1
1 − t

δ( ⋅ , Xi
1), uθ,i

t ( ⋅ , Xt))

"Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective” Shaul et al. (2024)

“Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution” Lou et al. (2024)

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2412.03487v1
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2407.15595


Example: code generation model (1.7B)

“Discrete Flow Matching” Gat el al. (2024)

Success case Failure case

https://arxiv.org/abs/2407.15595


Example: code generation model (1.7B)

“Discrete Flow Matching” Gat el al. (2024)

https://arxiv.org/abs/2407.15595


How to go beyond the factorized velocity? 

Better sampling? 

How to explore the (huge) design space? 

OPEN PROBLEMS FOR DISCRETE FLOWS

Design choices: 

•Process 

•Marginal Path 

•Corrector steps 

•Models superposition



Flow Matching blueprint

Data Path design Training Sampling
π0,1p q pt



06	 	 Demo



Github

Flow Matching Codebase

Discrete:          FineWeb  

Continuous:   ImageNet 32, 64

Supports Discrete, Riemannian and Continuous FM!

Scalable training code

https://github.com/facebookresearch/flow_matching



