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The Scientist’s Game

Current State of Knowledge

Interpret Construct
and Report a Testable
Hypothesis

Statistical
Analysis

Design the
Experiment

Perform the Experiment

image credit: Steltman (2018)



https://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf

What’s an Experiment?

factors of interest to the experimenter:
experiment tests specific levels (values) of these factors

fixed factors
(variables, inputs,
treatments) — system or process outcomes
we wish to » (responses,
better understand measurements)

random factors



What’s an Experiment?
Medical Research

amount or type of
drug administered

human body

fixed factors

(variables, inputs,
treatments) — system or process outcomes

we wish to » (responses,
better understand measurements)

random factors
time to recovery,

pre- vs. post-

population sample treatment survey

(e.g., individuals,
hospitals)



What’s an Experiment?

Behavioral-Science Research

educational
curriculum

human mind

fixed factors
(variables, inputs,
treatments) — system or process outcomes
we wish to » (responses,
better understand measurements)

random factors
accuracy,

choice

population sample



loss function,
architecture

fixed factors

(variables, inputs,
treatments)

random factors

initialization,
data set

What’s an Experiment?

Machine-Learning Research

ML setting
(e.qg., few-shot learning,
unsupervised learning)

system or process outcomes
we wish to » (responses,
better understand measurements)
loss,
accuracy



hyperparameters,
data set augmentations

fixed factors
(variables, inputs,
treatments)

What’s an Experiment?

Machine-Learning Research

learning algorithm,
architecture

system or process outcomes

we wish to » (responses,

random factors

initialization,
data set

better understand measurements)

loss,
training efficiency



What’s an Experiment?

Goal: Infer effect of fixed factors on outcomes for new levels of random factors

fixed factors
(variables, inputs,
treatments) D system or process outcomes
we wish to » (responses,
better understand measurements)

random factors

= E.g., will medication benefit individuals who didn’t participate in the study?
= E.g., will teaching intervention improve performance of students in other classrooms?

= E.g., is architecture X likely to outperform architecture Y on a new data set?



Confounds in Experimental Design

The effect of factors cannot be distinguished

= E.g., teacher X , teacher Y

= E.g., fine tune with dataset X
and with dataset Y Fixed factor Outcome

= E.g., run algorithm X
, algorithm Y




Study Population

Relevant to ML?

Avoiding Confounds 1:
Randomized Controlled Trial

rind

Treatment

Random

Control

piee

e

Follow-up

Follow-up

AN

1111

7

Compare Results

& rerraramrann

= E.g., evaluating new recommendation engine with live experiment

= E.g., robotics (lighting conditions, temperature, etc.)

image credit: https://thetoolkit.me/123-method/metrics-based-evaluation/met

rics-step-2/randomised-trials/



Avoiding Confounds 2:
Holding Constant Secondary Factors You Can Control

Uncontrolled factors may mask effects you
hope to observe or may induce spurious
correlations.

= E.g., choice of backbone
= E.g., hyperparameter settings or search
= E.g., training epochs

= E.g., batch size

minilmageNet 5-way

model backbone 1-shot 5-shot
MAML [12] 32-32-32-32 48.70 = 1.84 63.11 £0.92
Matching Networks [55] 64-64-64-64 4356 = 0.84 55.31 £0.73
IMP [2] 64-64-64-64 492+ 0.7 64.7 £ 0.7
Prototypical Networks' [46] 64-64-64-64 4942 +0.78 68.20 £ 0.66
TAML [21] 64-64-64-64 5177 £1.86 66.05+ 0.85
SAML [15] 64-64-64-64 5222 &+ n/a 66.49 + n/a
GCR [27] 64-64-64-64 53214+0.80 72.34+0.64
KTN(Visual) [35] 64-64-64-64 54.61 £0.80 71.21 £0.66
PARN[60] 64-64-64-64 5522 +0.84 71.55 %+ 0.66
Dynamic Few-shot [14] 64-64-128-128 56.20 £ 0.86 73.00 £ 0.64
Relation Networks [48] 64-96-128-256 5044 £0.82 65.32£0.70
R2D2 [3] 96-192-384-512 512+ 0.6 68.8 0.1
SNAIL [29] ResNet-12 5571 £0.99 68.88 +0.92
AdaResNet [32] ResNet-12 56.88 £0.62 71.94 +0.57
TADAM [34] ResNet-12 58.50 +£0.30 76.70 +0.30
Shot-Free [41] ResNet-12 59.04 £+ n/a 77.64 £ n/a
TEWAM [37] ResNet-12 60.07 = n/a 7590 £+ n/a
MTL [47] ResNet-12 61.20 +1.80 75.50 +0.80
Variational FSL [64] ResNet-12 6123 +0.26 77.69 +0.17
MetaOptNet [26] ResNet-12 62.64 £ 0.61 78.63 +£0.46
Diversity w/ Cooperation [11]  ResNet-18 5948 £0.65 75.62+0.48
Fine-tuning [9] WRN-28-10 5773 +£0.62 78.17 +0.49
LEO-trainval " [44] WRN-28-10 61.76 = 0.08 77.59 +0.12
Ours-simple ResNet-12 62.02 +0.63 79.64 +0.44
Ours-distill ResNet-12 64.82 + 0.60 82.14 + 0.43

Tian et al. (2020), “Rethinking few-shot classification”



Avoiding Confounds 3:
Paired-Comparison Design

within-subject design
repeated-measure design

When randorn factors are.lr}cluded, match .values I —
across experimental conditions when possible.

. o . . 1 rnd init 1 rnd init 1
= E.g., match weight-init seeds (if conditions have the datasplitl  data split 1
same architecture)
o . . 2 rnd init 2 rnd init 2
= E.g., match batch-randomization seed (if conditions datasplit2  data split 2
have same data set and training methodology)
. . 3 rnd init 3 rnd init 3
= E.g., match data set splits when performing cross datasplit3  data split 3
validation
, . . oo 4 rnd init 4 rnd init 4
As we’ll discuss, matching strengthens statistical datasplit4  data split4

inference and hypothesis testing.



Replicability with PyTorch

def set seeds(random seed): Sets random seeds.
random.seed(random_seed)
np.random.seed(random seed)

torch.manual seed(random seed)

if torch.cuda.is available():
torch.cuda.manual seed(random_seed)
torch.cuda.manual seed all(random _seed)

torch.backends.cudnn.benchmark = False

torch.backends.cudnn.deterministic = True

os.environ[ "PYTHONHASHSEED"] = str(random seed)



Replicability with Jax

def set seeds(random seed): Sets random seeds.
random.seed(random_seed)
np.random.seed(random seed)

key = jax.random.key(random seed)

return key

key = set seeds(init seed)
for 1 in range(n_steps):
key, subkey = jax.random.split(key)
params = update(key, params, next(batches))



Experimental Desigh Summary

Fixed factors

= Specific comparisons of central interest

Random factors

= Variables you want to generalize over

Constant factors

= Variables about which you do not wish to draw conclusions, matched to avoid confounds

When | compare algorithms X, Y, and Z on architecture A, my experiments indicate that
X should perform better on a new data set thanY or Z.




Hypothesis Testing: Two Conditions or Treatments

data set splits,

. . weight
Question of interest initializations
= |s model A more accurate than model B? Vodel A Model B
| ERFEEAE
Null hypothesis (H) ) . 20 20
, - 2 80 10
Ha=HB 3 25 60

Statements

Alternative hypothesis (H ;) >~ about 4 = e
population 5 45 25

» directed: Uy > up characteristics |\ ean (std) 51.0 (23.3) 41.0 (24.6)

= exploratory: u, + Ug

_/



Hypothesis Testing: Two Conditions or Treatments

Strategy: Identify test statistic that distinguishes Hy and H ;;

E.g., t statistic used to compare two treatments with numerical outcomes

A — IpB observation means

t —

(na—1)s5+(np—1)s; { 1 4+ A
na+ng—2 ny ng
estimated standard error of the difference of means

=8)
o
IS

C If H,; (g > up) true,
t distribution L t should be large,

under H and therefore unlikely
under Hy (14 = Upg)

Mg, df
©
w

o
N

p(t statistic | ua
o
=

o
o

4 —2 0 2 4  tstatistic



Hypothesis Testing: Two Conditions or Treatments

Pick a critical value of ¢, t,.;;.

Ift > t,..;;, reject Hy Ift < t..;, donotreject H,
Pr(reject Hy | Hy true) = « Different than accepting H
. 0.4
i
<03
t distribution i‘ Arbitrary threshold
under H =02
% 0.1
00— 6 b 4 tstatistic




Hypothesis Testing: Two Conditions or Treatments

What does this particular example indicate?

= Either no difference, or small difference masked by observation variability.

= Experiment is underpowered: not enough replications to see a difference.

t distribution
under H

0.4

Mg, df

p(t statistic | ua
o
=

0.0

_—— experiment t statistic

Replication Model A Model B

70 70

80 10

25 60

35 40

t statistic

1
2
3
4
5
m

45 25

ean (std) 51.0(23.3) 41.0 (24.6)



t Test Assumptions

= Sample means X, and xXg are normally distributed —

Fair bet if n, and ng are large enough

see Welch’s test
when either
condition is violated

= Variance of two distributions are roughly equal |

= Sample sizes are within a factor of 2 of one another

Easy to control in simulation experiments

Not hard to find tests suited to your problem via Wikipedia
e.g., count data
e.g., comparing empirical probability densities
e.g., nonparametric tests

Also possible to transform data to satisfy assumptions
e.g., log transforming long-tailed distributions
e.g., computing log odds instead of probabilities
(which are 0-1 bounded)




Degrees of Freedom in Statistical Test

Density of the t-distribution (red) for 1, 2, 3, 5, 10, and 30 degrees of freedom compared to the
standard normal distribution (blue).
Previous plots shown in green.

H H H H H H 0.40 0.40 0.40
t distribution is conditioned on S il 2 '
4 0.30 0.30 0.30
degrees of freedom in data set
§o.2o §o.2o §o.2o
2 0.15 0.15 0.15
[ | dOf — n —|— n —_— 0.10 0.10 0.10
A B 0.05 0.05 0.05

RT3 =10 1 2 3 4| "5 =10 1 2 & 4| B ==1 0 1 Z2 3 4

X X X
1 degree of freedom 2 degrees of freedom 3 degrees of freedom

0.40 r r 0.40 T r 0.40
[ [ [ 0.35 0.35 0.35
t distribution approaches a [ oso
0.25 0.25 0.25
standard normal as dof — 30
0.15 0.15 0.15
0.10 0.10 0.10
0.05 0.05 0.05

0N =2 T =1 0 1 2 % 4f]| "Ma s 1210 1 £ 3 ¢f| =T 0 1 Z 3 4

X X X
5 degrees of freedom 10 degrees of freedom 30 degrees of freedom

image credit:
Wikipedia



One-Tailed Versus Two-Tailed Tests

0.4 Ha> Up

= Up, df

p(t statistic | ua
o
=

0.0

—4 -2 0 2 4
t statistic

Requires a priori hypothesis that
justifies one-way comparison.

= Your wish that your model is
better is insufficient.

—8)

= Mg, df

p(t statistic | ua

0.4 Ha7F Up

t statistic



Unpaired t-test Paired t-test

(a.k.a. paired comparisons)

Random Factor
Replication Model A Model B Level Model A Model B
80 70

1 70 70 1
2 80 10 2 25 10
3 25 60 3 70 60
4 35 40 4 45 40
5 45 25 5 35 25
mean (std) 51.0(23.3) 41.0 (24.6) mean (std) 51.0(23.3) 41.0 (24.6)
804 ?0.4
5 !
one-tailed £ > one-tailed & >
t(8) =0.66, o t(4) =6.3, o
p=053 & _ p=0.003 &
% %0.0

0.0

| t statistic -4 -2 0 2 4 !
t=.66 for t statistic t=6.3 for
experiment experiment



Theoretical
Null non-null value

Null
Hypothesis

H

0o

Alternative
Hypothesis

Hyt

Typell Typel
error error
p a

Without a specific alternative hypothesis, don’t know the form of H ;.
= Classic hypothesis testing is based on likelihoods not posteriors.

There is a Bayesian hypothesis testing literature.

Image credit: https://www.abtasty.com/blog/type-1-and-type-2-errors/



Comparing >2 Levels of Fixed Factor

Multiple pairwise comparisons ....
Factor | Model | Model | Model | Model
"= Avs.B,Avs.C,Avs. D, .. LevCiN A B C D
70 80 85 60

10 25 40 35
60 70 70 80
40 45 40 35
25 35 40 35

= With multiple comparisons, greater
opportunity for spurious significance

E.g., with 4 levels, 6 pairwise comparisons,
and a =. 05 significance level, probability of
spurious significance result is roughly 26%, not 5%

o A W N B

= Solution: Bonferroni correction

[ ] [ ] [ ] a [ ]
use significance level : instead of a
#comparisons

simple but conservative method of controlling type | error



Comparing >2 Levels of Fixed Factor

Multiple pairwise comparisons

Regression ' . B 9l
= Appropriate when levels I
are ordinal or cardinal | [ By I 1Y
= t test with null hypothesis CREYOENCT |- -y
slope = 0 or correlation = 0 l ‘ I
5 3 ; T

Perturbation magnitude (L)



Comparing >2 Levels of Fixed Factor

Multiple pairwise comparisons
Regression
ANOVA (ANalysis Of VAriance)

= Hang tight, we’ll get there...



unsubmitted

The Value of Hypothesis Testing

2023 paper
Task/Model Original Quantization | Adaptive Quantization | Adaptive Hierarchical
Alien 0.130 £ 0.023 | 0.152 £ 0.026 0.170 + 0.075 0.177 £+ 0.057
BankHeist 0.397 4+ 0.043 | 0.371 4+ 0.057 0.406 + 0.037 0.414 + 0.084
Berzerk 0.436 4+ 0.250 | 0.584 +0.011 0.630 + 0.016 0.580 + 0.021
Boxing 0.873 +0.021 | 0.908 + 0.068 0.929 + 0.031 0.957 + 0.041
MsPacman 0.152 4+ 0.037 | 0.135 4+ 0.030 0.054 + 0.002 0.057 &+ 0.005
Pong 0.169 + 0.047 | 0.201 £ 0.035 0.205 + 0.068 0.225 + 0.031
shapes 0.674 + 0.055 | 0.672 £+ 0.053 0.664 + 0.034 0.692 + 0.065
Spacelnvaders | 0.138 £+ 0.037 | 0.199 + 0.085 0.258 + 0.103 0.232 4+ 0.076

Proposed methods: last two columns

= double your chances to win!

Ran t tests comparing all 6 pairs of methods

Mean score

043

0.42 |

0.41 -

0.40 -

0.39

0.38

0.37 -

0.36 |

0.35 -

original gquant

Method

adapt quant adapt hierarch

" None significant at .05 level (even without Bonferroni correction)

" Closest: t(7) = 1.83, p = 0.11




Error Bars in Graphs

= 41 standard deviation

* Describes the dispersion of individual
observations

Dependent variable
N w A~ (o)) (@) ~ (00)
o o o o o o (&)
1 )

—h
o

n=3 n=10 n=30
) i
8
8
.o o o )
: :
SD SD ¥ sp

Cumming, Fidler, & Vaux (2007)



https://drive.google.com/file/d/0B7EoydxcWA7pT2NVZlFyQ3JNMkk/view?resourcekey=0-1JEYY1uCoqLUyMJlwkMvvA

Error Bars in Graphs

= 41 standard deviation

* Describes the dispersion of individual
observations

= +1 standard error of the mean (SEM)

* Describes the uncertainty in the estimate of
the true mean based on n independent samples

Dependent variable
N w A~ (o)) (@) ~ (0]
o o o o o o o
J

—h
o

n=3 n=10 n=30
SE ¢ N
se
| }
]
® ‘o { .9
: :
L 1 il
SD SD $ sD

SE

Cumming, Fidler, & Vaux (2007)



https://drive.google.com/file/d/0B7EoydxcWA7pT2NVZlFyQ3JNMkk/view?resourcekey=0-1JEYY1uCoqLUyMJlwkMvvA

Error Bars in Graphs

= 41 standard deviation

* Describes the dispersion of individual
observations

= +1 standard error of the mean (SEM)

* Describes the uncertainty in the estimate of
the true mean based on n independent samples

= 9504 confidence interval
e ...on the true mean

* Get this with +t,_ g2 SEM ; if n > 30, =2 SEM is reasonable

Dependent variable
N w B (6] D ~l (0 0]
o o o o o o (&)
)

—h
o

n=3 n=10 n=30

Cl

1 O

SE

SD SD

L ]
L
L
L
.
@
[
@

La—.025
4.30 2.26 2.05

Cumming, Fidler, & Vaux (2007)



https://drive.google.com/file/d/0B7EoydxcWA7pT2NVZlFyQ3JNMkk/view?resourcekey=0-1JEYY1uCoqLUyMJlwkMvvA

Error Bars in Graphs

Does (non)overlap between

error bars indicate statistical

(un)reliability of differences?
= +1 standard deviation

no
* Describes the dispersion of individual

observations

= +1 standard error of the mean (SEM)

* Describes the uncertainty in the estimate of
the true mean based on n independent samples

if samples roughly equal size and
unpaired, overlap = p > 0.05

* 95% confidence interval
* ... on the true mean if samples roughly equal size,
* Get this with +t,_ g25 SEM ; if n > 30, £2 SEM is reasonable non-overlap = p < 0.05

Belia, Fidler, Williams & Cumming (2005)



http://halfonlab.ccr.buffalo.edu/other_docs/Cumming_2007.pdf

Visualizing Uncertainty for Paired Comparisons

Random Factor Treatment A Treatment B v
Level o) B0 -
0
1 70 80 —
S 50 |
2 10 25 -
O
3 60 70 g 40 -
4 40 45 -
2 o
5 25 35 ©
Mean (SEM) 41.0 (11.0) 51.0 (10.4) treatment A treatment B

Treatment A is consistently lower than B...
but SEM indicates uncertainty.
Explanation: Error bars indicate variability in both random factor and treatment effect.

Remove random-factor variability to better visualize treatment-effect reliability.



Removing Variability Due to Random Factor
(Masson & Loftus, 2003)

Yij: observation for level i of random

factor and fixed factor level j ———
Factor
yi: mean observation across fixed Level

factor levels for random factor level i 1 41.0 51.0
2 10 25 38.5 535
y: mean observation across random 3 60 70 41.0 51.0
and fixed factor 4 40 45 43.5 48.5
5 25 35 41.0 51.0
Adjusted score Mean  41.0 51.0 41.0 51.0

(SEM)  (11.0) (10.4) (0.79) (0.79)

Vii=YijtY—Yi



Removing Variability Due to Random Factor
(Masson & Loftus, 2003)

) )
5 00 - = B0
s -
y = y =
S 50 - S 50
— —
o o
- 40 - - 40
c cC
2 2
0] - 0]
t:.30 .030

treatment A treatment B treatment A treatment B

Error bars better reflect the consistency of the treatment effect as well as
the result of statistical tests.

“Error bars reflect =1 SEM, corrected to remove common variance due to
[the random factor] (Masson & Loftus, 2003).”



Until now, we’ve focused on experiments
= with a single factor (e.g., model architecture)

= with two levels of the factor (e.g., CNN vs. transformer)

With the ANOVA, can perform analyses with
" multiple factors simultaneously

=" many levels of each factor



Single Factor

One-Way ANOVA

One fixed factor with 2 or more levels: A, B, C, ...

"Hy: py=pp=pc=--

" Hy: 3LJ: p; # W

Why do we want to do this test?

= |nitial test to justify performing specific comparisons between pairs
= |f you cannot reject Hy, stop there!

Special case of a linear mixed-effects model

= LME models allow for missing data, ANOVA does not

both fixed and
random factors



Let’s do a one-way repeated measure ANOVA

= e.g., compare models A, B, C

= random factor = data split with 5-fold cross

validation

= same splits for each model

spit A8 lc____
30 28 16

1
2
3
4
5

mean

14 18
24 20
38 34
26 28
26.4 25.6

10
18
20
14
15.6

=8)

2. df(csM

P(F | dfmoae

Procedure

= Compute F statistic

" If F > F_.;, reject H,

|

0.8 |

0.6 1

0.4 -

0.2 1

00 %

0 2 - 6

8
F statistic

10

12

14 !
|

F=15.0 for
experiment

16



In analysis of variance, variation in response measurements is partitioned
into components that correspond to difference sources of variation.

Z(ym,s - 37..)2 N Z(@m. ~7.)° Nm Z(y.s -7.)°

m,Ss m S
SStotal = + SSsplit +  $S;esidual
sum of
squares total variation variation due residual
in data to the split variation
df total = NsX Ny — 1 deplit =ng—1 df residual = (Ns—1)(ny, — 1)

F is large if the variation in
the data due to the model
F : ;
is large relative to
variation due to noise.

F statistic

I MS residual AN residual /df
residual

(dfmodel: dfresidual)



Manual Computation of F Statistic

° d = np.array([[30,14,24,38,26],
[28,18,20,34,28],
[16,10,18,20,14]1])

n_model, n_split = d.shape

model means = np.mean(d,axis=1)
np.mean(d,axis=0)

split means
overall mean = np.mean(d)

total ss = np.sum(pow(d-overall mean,2))
model_ss

np.sum(pow(model means-overall mean,2)*n_split)

split_ss np.sum(pow(split means-overall mean,2)*n _model)

residual _ss = total ss - model ss - split_ss

df model = n model-1 # lose 1 degree of freedom due to overall mean constraint
df split = n split-1 # lose 1 degree of freedom due to overall mean constraint
# the degrees of freedom in the residual are found be taking total degrees of
# freedom in the data and removing dof models, splits, and overall mean

df residual = (n_model-1) * (n_split-1)

F = (model ss/df model) / (residual ss/df residual)

print('F(%d,%d) = %.4f'%(df _model,df residual,F))

—--NORMAL--

F(2,8) = 15.0055

=8)

2, dfresia

P(F | dﬂn\:ue.'

EX3 P CO
30 28 16

1
2 14 18 10
3 24 20 18
4 38 34 20
5 26 28 14
10 1
0.8 A
0.6 1
0.4
0.2 1
00 T T T T L} T L L
0 2 4 6 8 10 12 14 | 16
F statistic ! )
F=15.0for

experi ment

Yes, there are
differences among
the three models.



From |STAT package

SOURCE: grand mean
model N MEAN SD
15 22.5333 8.0166

SOURCE:

model MEAN SD
26.4000 8.7636
25.6000 6.5422
15.6000 3.8471

FACTOR : split model

LEVELS : 5 3
TYPE - RANDOM WITHIN

SOURCE

7616.2667 7616.2667 69.071 0.001 xx
441.0667 110.2667

362.1333 181.0667 15.006 )0.002 xx
96.5333 12.0667




Recommended Tools for ANOVA and Data Modeling

environment flexibility overhead to use

Q E‘:n F;;:z{qeﬂ for Statistical R most hi gh
.0 @
f“.. g S‘ta‘tsm()dels python moderately high
(can it do mixed-design ANOVASs?)

p i n g()u i n python moderately intermediate
ISTAT Statistical Data Analysis .

.unlx, limited low

windows

garyperlman.com/stat/




Assumptions of ANOVA

Dependent measure is continuous

Measurements are independent

Noise in measure (residuals) is normally distributed
Homogeneity of variances

= same variance across levels of factor

= for paired-comparison designs, sphericity
(homogeneity of variance of differences between levels)



ANOVA is a Flexible Family of Methods

Nonparametric variant

= One-way ANOVA on ranks (Kruskal-Wallis)
Two or more dependent measures

= Multivariate ANOVA

Continuous factors

= ANCOVA

More than one random factor

More than one fixed factor



Factorial Design

Learning composable world models for physical prediction
(Wang, Allen, Vul, & Fan, 2022)

Mass

Environment . Heavy
il ‘Indoor F,=msg
z
FW

Outdoor

FW FW FW
Fg= m,g Fg= myg Fg= msg
—  indoor
» BEELE outdoor

Figure 1: (A) The 2 x 3 design matrix of our experiment, where participants were trained on 5 out of these 6 cells, and asked to
generalize to the held-out cell. The choice of held-out cell was counterbalanced across participants. (B) Different trajectories

of a ball when its mass and the environment varies.

E



2X2 X3 Factorial Design

SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos
(Elsayed, Mahendran, van Steenkiste, Greff, Mozer, & Kipf, 2022)

Backbone Data Augmentation Training Target
CNN no flow
Transformer yes depth
flow+depth
0.5
M
— 0.3 | mEE SAVi++ '
C—ED B w/o Trans. :[ I
0.2 | W w/o Trans. & Aug.
w/o Trans. & Aug. & Depth
0.1 WM w/o Flow
w/o Depth
0.0 N [ [ .

MOVi-C MOVi-D MOVi-E



2 x 2 Design

095/ £ 9
' —— no aug
Two factors 0.90]
. 0.851
" model (A VS. B) S 0.80
00.75- |
= data augmentation 070! -
(yes vs. no) 0,65

model



2 x 2 Design

0.95 _—II: o aug | | o5 T combined
Two factors 0.90 0.90 |
.. 0.85 085
" model (A VS. B) goso goso
i 0.75 g 0.75 1
= data augmentation 0701 070,
(yes vs. no) 065] | 065
A model ° A model
| —+ aug
Conclusions ZZZ ~+ noaug

=B>A

o

@

]
f—eo—

accuracy
o
(o]
o

o

~

w
f—o—

" aug. > no aug.

0.70 1

0.65 1

comBined
model



2 x 2 Design

0.95 1

Two factors 0.90.

°
0
oyl

* model (A vs. B)

accuracy
o
(o)
o

0.75 1
= data augmentation 0701
—+— aug
(yeS VS. nO) 0.65 - ~—}— no aug
A ;

model



Two factors
* model (A vs. B)

= data augmentation
(yes vs. no)

Conclusions
= B>A
" qug. > no aug.

= interaction of two factors

interpretation of the effect of one factor
depends on the value of the other

0.95 1

0.90

accuracy
o o
(o] [e0]
o w

o
~
w

0.70

0.65 1

0.951

0.90 1

accuracy
o o
[e0] [e0]
(o] w

o
~
v

0.70 1

0.65 1

2 x 2 Design

—1— aug
—}— no aug
A B
model
—+— aug
~—$— no aug {

comBined
model

accuracy

0.95 -

0.90 1 /

0.70 1

o
o)
oy

o
o3
o

o
~
w

0.65 1

~—}— combined

model




ANOVA Can Test for Interactions Among factors

When two-way interaction is not When two-way interaction is
significant, the main (marginal) significant, story needs to take
effects tell the whole story. the interaction into account.

095{ 0.95

0.90 0.90 -

0.85 1 0.85 1

accuracy
o
(o]
o
accuracy
o
(o]
o

0.751 0.751

0.7017 0.70 1

0.65{ | 0.65

model model

Same applies for 3-way interactions tempering
interpretation of 2-way interactions and main effects, etc.



Human Behavioral Experiment
(Veerabadran et al., 2022)

Are people susceptible to adversarial perturbations of images?

T

v

Which image is more bottle-like? Which image is more cat-like?

Fixed Factors Random Factor

= Perturbation magnitude, € € {2,4,8,16} = Human subject

= Image class € {bottle, cat, dog, bird} = Perturbation magnitude is within subject
= Image class is between subject



https://drive.google.com/file/d/1kpU8D08linT5LdwSGF_hvlDYmwm4P6RB/view?usp=sharing&resourcekey=0-CbOKukGqqDin11kpHJu3wg

Perceptual Bias

Human Behavioral Experiment

1.0+
0.9+
0.8+
0.7+

0.6+

0.5
0.4+
0.3

0.2+

2

I I |

4 8 16
Perturbation Magnitude

(€)

)

subj class
396 4
RANDOM BETWEEN

main effect
of class

main effect
of €

class x €
interaction

eps
4
WITHIN

13389.503

19.860

22.076

2.545



https://drive.google.com/file/d/1kpU8D08linT5LdwSGF_hvlDYmwm4P6RB/view?usp=sharing&resourcekey=0-CbOKukGqqDin11kpHJu3wg

Wrapping Up...

You'll already raise the bar for Al/ML research if you
= give forethought to the experimental design matrix
= use paired-comparison designs
= do statistical analysis of results

This will advance ML to the standards of practice in psychology and
medicine circa 2010.



Science has been in a “replication crisis” for a
decade. Have we learned anything?

Bad papers are still published. But some other things might be getting better.

lox

Article | Published: 16 March 2022
Reproducible brain-wide association studies require

PSyC h O lOgyls Re Na |Ssa NCE thousands of individuals

Scott Marek &5, Brenden Tervo-Clemmens &, ... Nico U. F. Dosenbach & 4+ Show authors

Nature 603, 654-660 (2022) @ Cite this article

Annual Review of Psychology

Vol. 69:511-534 (Volume publication date January 2018)
First published as a Review in Advance on October 25, 2017
https://doi.org/10.1146/annurev-psych-122216-011836

28k Accesses | 9 Citations | 1383 Altmetric | Metrics

Abstract

Magnetic resonance imaging (MRI) has transformed our understanding of the human brain
through well-replicated mapping of abilities to specific structures (for example, lesion

studies) and functions"2> (for example, task functional MRI (fMRI)). Mental health research
and care have yet to realize similar advances from MRI. A primary challenge has been

. . . . replicating associations between inter-individual differences in brain structure or function
Le | f D . N e lSO n ’ 1 J ose p h Sl mmon S,z an d U ri Sl monso h nz and complex cognitive or mental health phenotypes (brain-wide association studies (BWAS)).
Such BWAS have typically relied on sample sizes appropriate for classical brain mapping* (the
Abstract median neuroimaging study sample size is about 25), but potentially too small for capturing
reproducible brain-behavioural phenotype associations*®. Here we used three of the largest
In 2010-2012, a few largely coincidental events led experimental psychologists to realize that their approach to collecting, analyzing, neuroimaging datasets currently available—with a total sample size of around 50,000
and reporting data made it too easy to publish false-positive findings. This sparked a period of methodological reflection that we
review here and call Psychology's Renaissance. We begin by describing how psychologists’ concerns with publication bias shifted
from worrying about file-drawered studies to worrying about p-hacked analyses. We then review the methodological changes that
psychologists have proposed and, in some cases, embraced. In describing how the renaissance has unfolded, we attempt to describe
different points of view fairly but not neutrally, so as to identify the most promising paths forward. In so doing, we champion
disclosure and preregistration, express skepticism about most statistical solutions to publication bias, take positions on the analysis
and interpretation of replication failures, and contend that meta-analytical thinking increases the prevalence of false positives. Our

general thesis is that the scientific practices of experimental psychologists have improved dramatically.

individuals—to quantify BWAS effect sizes and reproducibility as a function of sample size.
BWAS associations were smaller than previously thought, resulting in statistically
underpowered studies, inflated effect sizes and replication failures at typical sample sizes. As
sample sizes grew into the thousands, replication rates began to improve and effect size
inflation decreased. More robust BWAS effects were detected for functional MRI (versus
structural), cognitive tests (versus mental health questionnaires) and multivariate methods

https://www.nature.com/articles/s41586-022-04492-9

(versus univariate). Smaller than expected brain-phenotype associations and variability
across population subsamples can explain widespread BWAS replication failures. In contrast
to non-BWAS approaches with larger effects (for example, lesions, interventions and within-
person), BWAS reproducibility requires samples with thousands of individuals.




Expectations for Scientific Experimentation in 2025

Report effect sizes
Controlling type | and Il errors

Preregistration



Report Effect Size

Statistical reliability is not sufficient.
= Even very small effects are reliable with large enough sample size.

Need a measure of effect magnitude.

= e.g., Cohen’s d 420 =1 Effect size  d
g Ja—Up | Very small | 0.01
- s Small 0.20
~ o o Medium 0.50
j e e 21 2 = = { 1
s — \/ZJE{A,B} Z'I:Zl(yjaz yj) Large 0.80
ng+np—2 Very large | 1.20
\ Huge 2.0 |
pooled
std. dev.

image and table credits: https://en.wikipedia.org/wiki/Effect_size#Cohen's_d



Controlling Type | and Il Errors

Bonferroni correction for multiple comparisons
= Limits type | errors

Select sample size in advance, which requires specification of
= acceptable type | error rate ()

= acceptable type Il error rate (f)

* smallest effect size of scientific interest (e.g., Cohen’s d = .2)

= standard deviation of random samples
(e.g., measurement from pilot simulations)



Controlling Type | and Il Errors HEOT=s 0

Sample Size Calculator

Determines the minimum number of subjects for

COOkbOOk tOOIS on the Web adequate study power

# ClinCalc.com » Statistics » Sample Size Calculator

Study Group Design

avs. & & vs. i
Two independent One study group

" €.8., powerandsamplesize.com

study groups vs. population
. e ° g ° ’ c l i n ca l c . c om/ s ta t s / S amp l e S i Z e ° a pr Two study groups will each receive different treatments.
Primary Endpoint

G il

Dichotomous Continuous
(yes/no) (means)

The primary endpoint is binomial - only two possible outcomes.
Eg, mortality (dead/not dead), pregnant (pregnant/not)

Statistical Parameters

Anticipated Incidence Type I/11 Error Rate
Group 1 (2 % Alpha (2) 0.05
Group 2 (2) % Power (2) 80%

Incidence v

Enroliment ratio (2) 1



http://powerandsamplesize.com/
https://clincalc.com/stats/samplesize.aspx

Preregistration

p hacking

= practice of fiddling with experiment until you get a significant result and
then quitting

e.g., run 10 versions and find one version that does what you want it to and report that one

e.g., continue to test more levels of random factor until you get a significant result, then stop

Formally register experiment online prior to running it

= aspredicted.org — can remain private; perhaps easier to use

= osf.io — becomes public after some period of time



Some Further Readings

Miller, E. (2024). Adding error bars to model evals: A statistical approach to
language model evaluation. arXiv:2411.00640 [stat.AP]

van Miltenburg, E., van der Lee, C., & Krahmer, E. (2021). Preregistering NLP

reesearch. In K. Toutanova, et al. (Eds.) Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Belia, S., Fidler, F., Williams, J., & Cumming, G. (2005). Researchers
misunderstand confidence intervals and standard error bars. Psychol.
Methods, 10, 389—-396.



https://arxiv.org/abs/2411.00640
https://arxiv.org/abs/2411.00640
https://aclanthology.org/2021.naacl-main.51/
https://aclanthology.org/2021.naacl-main.51/
https://aclanthology.org/2021.naacl-main.51/
https://aclanthology.org/2021.naacl-main.51/
https://pubmed.ncbi.nlm.nih.gov/16392994/
https://pubmed.ncbi.nlm.nih.gov/16392994/
https://pubmed.ncbi.nlm.nih.gov/16392994/

Thank you!



Cognitive evaluation of
language models

Jennifer Hu
Experimental Design and Analysis for Al Researchers @ NeurIPS
December 10, 2024

et HARVARD o
Kempner ARVAR ¥ JOHNS HOPKINS
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“understanding”




“understanding”
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what we want
to measure



“understanding”

what we want
to measure

what we can
observe



“understanding”

Behavioral measures
Physiological responses

@

Offline

r A
Online ‘ 'l\
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We care about cognitive constructs in models...

theory ofmlnd .

V reasoning

planning &—
/ grammar



We care about cognitive constructs in models...

CCCCCCC

ghga

°
@ mmlu

bigbhench

(A

) gsm8k

...but we only have access to evaluations



What do our evals measure?

* Evaluations aren’t foolproof - they can tell us the “wrong thing”

» Construct validity: we need to make sure our tests actually
measure the ability of interest

* This is a central part of experimental design, but has received little
attention in Al research



Task demands threaten construct validity

Task demands: auxiliary challenges separate from the tested ability

1+2=7

Increase
difficulty

78 ~ 2413 +5649 =7



Task demands threaten construct validity

Task demands: auxiliary challenges separate from the tested ability

Increase task demands Marco has 1 pedometer
1+42=7 co——20d 2 pomelos. How many

items does he have?

math
vocab

reading
comprehension



Task demands threaten construct validity

Task demands: auxiliary challenges separate from the tested ability

Increase task demands” Marco has 1 pedometer
1+42=7 co——20d 2 pomelos. How many

items does he have?

*Differ across individuals!
(adult vs. child vs. calculator)



Today: Two case studies

How can task
demands affect our
conclusions about

LMs’ abilities?

Hu & Levy (EMNLP 2023),
Hu et al. (PNAS 2024)

How do task
demands affect LMs
with different
capacities?

Hu & Frank (COLM 2024)



Today: Two case studies

How can task
demands affect our

conclusions about
LMs’ abilities?

Hu & Levy (EMNLP 2023),
Hu et al. (PNAS 2024)




Example in the wild: Dentella et al. (2023)

RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES f ¥ in & '

Systematic testing of three Language Models
reveals low language accuracy, absence of
response stability, and a yes-response bias

Vittoria Dentella 8| Fritz Ginther , and Evelina Leivada Authors Info & Affiliations

Edited by Susan Goldin-Meadow, University of Chicago, Chicago, IL; received June 7, 2023; accepted October 28, 2023

December 13, 2023 | 120 (51) e2309583120 @ https://doi.org/10.1073/pnas.2309583120
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Example in the wild: Dentella et al. (2023)

“Our experiment shows that the tested LMs
display insensitivity to possible vs.
iImpossible language, with their answers
being both largely inaccurate and guided
by a yes-response bias.”



Example in the wild: Dentella et al. (2023)

Is the following sentence

grammatically correct? e X§
[sentence] \/

15



Example in the wild: Dentella et al. (2023)

Is the following sentence y
grammatically correct? e )< N\
The key to the cabinets \ %4
were destroyed by the fire.



Example in the wild: Dentella et al. (2023)

Is the following sentence y
grammatically correct? e )< N\
¢ The key to the cabinets \ %4
destroyed by the fire.



Example in the wild: Dentella et al. (2023)

s the following sentence _
No, the sentence is not

grammatically correct? e )Z N — :
The key to the cabinets N\l / grammatically correct...

were destroyed by the fire.



Q: Where might this approach go wrong?

Is the following sentence 7\
grammatically correct? =% &I;
[sentence]

* The goal is to understand the LM’s grammatical competence,
but this prompt tests metalinguistic abilities

* An LM could represent grammatical knowledge without being
able to answer the question in the prompt

19



what are probable candidates for the next word of the sentence "the dog barked
because"?

As a machine learning model, | am not able to provide a list of "probable" candidates for
the next word of the sentence "the dog barked because" because | do not have the ability
to understand or predict the actions of dogs or other animals. | am only able to process
and respond to information based on the data that has been input into my algorithms, and
| do not have the ability to make judgments about the likelihood of a particular word
following a given sentence. In order to provide a response, | would need additional
information about the context and the reasons for the dog's behavior. Without this
information, it is not possible for me to provide a list of potential next words for the

sentence.

20



Direct tests of linguistic generalization

* Fundamental unit of LM computation: P(token | context)
* This distribution reflects the model’s linguistic generalizations:

Training Inference
maximize P( ) — P( >=?
learn generative model evaluate likelihood of

of seen strings previously unseen strings



Direct tests of linguistic generalization

The to the cabinets
destroyed by the fire

N
[

“minimal pair”
S The to the cabinets
bad destroyed by the fire

Success criterion: P(s.__ ) > P(s;.4)



Metalinguistic eval underperforms Direct

Prompting is not a substitute for probability measurements
in large language models

Jennifer Hu Roger Levy
Kempner Institute Department of Brain and Cognitive Sciences
Harvard University Massachusetts Institute of Technology
jenniferhu@fas.harvard.edu rplevy@mit.edu
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Metalinguistic eval underperforms Direct

LMs may capture linguistic knowledge
without being able to correctly respond
to metalinguistic prompts.



Revisiting Dentella et al. (2023)

* Let’s re-evaluate models using direct probability comparisons

Is the following sentence grammatically correct? Success criterion:
The key to the cabinets was destroyed by the fire. Model response ==

The to the cabinets
destroyed by the fire Success criterion:

. The key to the cabinets P(S.000) > P(Spad)
= destroyed by the fire



Minimal pairs reveal high accuracy

-
o
|

Proportion correct
o
(@)
|

Anaphora

©
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I

Proportion correct
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I

NPIs

Grammatical Ungrammatical
Original condition

: Original results: models perform
Evaluation method B I
mm Dentella et al. prompts El Minimal pairs around chance, and have a yes bias

Center Embedding Comparative lllusion Intrusive Resumption

Order of Adjectives Order of Adverbs Plural Attraction

Grammatical Ungrammatical Grammatical Ungrammatical Grammatical Ungrammatical

Original condition Original condition Original condition ”



Minimal pairs reveal high accuracy

. Minimal pair results: models perform
Evaluation method o .
Dentella et al. prompts EE Minimal pairs around ce|l|ng across conditions

Anaphora Center Embedding Comparative lllusion Intrusive Resumption

-
o
|

Proportion correct
o
(@)]
|

o
o

Order of Adverbs
w— 1.0
(@]
o
Q
(@]
C
© 0.5
€
o
Q.
o
o
0.0
Grammatical Ungrammatical Grammatical Ungrammatical Grammatical Ungrammatical Grammatical Ungrammatical
Original condition Original condition Original condition Original condition
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Beyond accuracy: Predicting human variation

1.0 1

Human acceptance rate

o
N

o
o
I

o
o

o
~

O
oo
I

davinci3

|
-20 0 20
Surprisal difference

(Presented — Minimal pair) (Presented — Minimal pair)

|
-20 0 20
Surprisal difference

Original Condition
Grammatical
Ungrammatical

Phenomenon
Anaphora

Center Embedding
Comparative lllusion
Intrusive Resumption
NPlIs

Order of Adjectives
Order of Adverbs
Plural Attraction
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More datasets + languages

2

1

Ungrammatical
Model Score diff. (Presented - Minimal Pair)

Grammatical
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Model A mean surprisal

Ungrammatical sentence
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Suijkerbuijk et al. (2024)

Hu et al. (under review)
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Revisiting Dentella et al. (2023)

“Our experiment shows that the tested LMs
display insensitivity to possible vs.
impossible language, with their answers
being both largely inaccurate and guided
by a yes-response bias.”



Part 1: Summary

* Negative results from metalinguistic prompts # conclusive
evidence that an LM lacks a particular linguistic generalization

* Different evaluation methods can lead to drastically different
conclusions about LMs’ capabilities

31



Today: Two case studies

How do task
demands affect LMs

with different
capacities?

Hu & Frank (COLM 2024)




Task demands in LM evaluation

* We already know LMs are sensitive to task demands

* Developmental psychology: younger kids are more sensitive to
task demands than older kids or adults



RESEARCH ARTICLE PSYCHOLOGICAL AND COGNITIVE SCIENCES V) f X in |

Two-and-a-half-year-olds succeed at a
traditional false-belief task with reduced
processing demands

Peipei Setoh B, Rose M. Scott &, and Renée Baillargeon & Authors Info & Affiliations

Contributed by Renée Baillargeon, October 3, 2016 (sent for review June 7, 2016; reviewed by Peter Carruthers and Alan M. Leslie)

November 7, 2016 | 113 (47) 13360-13365 https://doi.org/10.1073/pnas.1609203113

Gheck for
aaaaaa
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LETTER PSYCHOLOGICAL AND COGNITIVE SCIENCES V) f X in &2 ?)

Can processing demands explain toddlers’
performance in false-belief tasks?

Paula Rubio-Fernandez 8, julian ara-Ettinger ¥, and Edward Gibson Authors Info & Affiliations

April 17,2017 114 (19) E3750 @ https://doi.org/10.1073/pnas.1701286114
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LETTER PSYCHOLOGICAL AND COGNITIVE SCIENCES V] f X in & r-.»

Reply to Rubio-Fernandez et al.: Different
traditional false-belief tasks impose different
processing demands for toddlers

Rose M. Scott &, Peipei Setoh *, and Renée Baillargeon Authors Info & Affiliations

April 17,2017 114 (19) E3751-E3752  https://doi.org/10.1073/pnas.1703665114
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Task demands in LM evaluation

* Our question: Does a model’s sensitivity to task demands also
depend on its overall capacity?



Task demands in LM evaluation

* Our question: Does a model’s sensitivity to task demands also
depend on its overall capacity?

\ ~ general power;

not tied to a task



Task demands in LM evaluation

* Our question: Does a model’s sensitivity to task demands also
depend on its overall capacity?

\ 1. Size (# parameters)

2. Training time



Task demands in LM evaluation

* Why does this matter?

If task demands mask the abilities of smaller models, we should re-
evaluate claims about emergence

New hypotheses about why and when kids will struggle with tasks



Predictions

Performance
C—
<>

Capability of agent
(age, size, training)

“Demand gap”
—

Demand gap
— High)

(

Capability of agent
(age, size, training)
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Statistical tests

Key effect: interaction between model capacity and task demands

1. Capacity = size

correct ~ size*evalMethod + (size*evalMethod | modelFamily)

\

grouping factor:
multiple sizes per family
(e.g., Pythia, Llama)

42



Statistical tests

Key effect: interaction between model capacity and task demands

2. Capacity =training time

correct ~ loglrainingStep*evalMethod

43



Experiments

e We test 2 evaluation contrasts
relevant to most LM evaluations,
each with and demand
variants

(

Demand gap

)

(




Contrast High-demand variant Low-demand variant

_VS_




Contrast High-demand variant Low-demand variant

_VS_

compare these variants on 2 domains




Domains for VS

Cognitive construct Dataset Example item

Both its sun-speckled shade and the
cool grass beneath were a welcome

Word prediction LAMBADA respite after the stifling kitchen ... It
almost made up for the lack of coffee
Grammaticality BLiMP; Dentellaetal. (1) Rachelle had bought that chair.

judgment 2023; Hu et al. 2024 (2) *Rachelle had bought that chairs.




Contrast High-demand variant Low-demand variant

_VS_




Contrast High-demand variant Low-demand variant

_VS_




Contrast

High-demand variant

Low-demand variant

P

X

answer_option

A chair and a coat
together cost $13.
The chair costs $10
more than the coat.
How much does the
coat cost?




Domains for VS

Cognitive construct Dataset Example item

Analogical [593][892][197]\n[847][14 3]
reasoning Webb etal. 2023 [542]\n[122][527][

A chair and a coat together cost $13.
Hagendorff et al. 2023  The chair costs $10 more than the
coat. How much does the coat cost?

Reflective
reasoning




Experiments

* We test 2 evaluation contrasts
relevant to most LM evaluations,
each with and demand

variants &/’

Demand gap

)

(




Experiments

* We test 23 open-source base LMs
with varying capabilities

\ Capability of agent

(age, size, training)




Models

* We operationalize “capability” in 2 ways:
1. Vary size (# parameters) while keeping other details constant

Model family Sizes tested  Training tokens Data cutoff
Pythia (deduped) {1,14,28,69,12} B 207 B 2020
OLMo {1,7} B {3,2.5} T Feb /March 2023
Gemma 2,7} B {2,6} T  unknown (before Feb 2024)
Llama-2 {7,13,70} B 2T Sept 2022
Mistral 7 B unknown  unknown (before Oct 2023)
correct ~ *evalMethod + ( *evalMethod | )

54



Models

* We operationalize “capability” in 2 ways:

2. Vary the duration of training for a given model (OLMo-7B)



Results

Evaluation
contrasts

Manipulations of “capability”

Size

Training time

_VS_

_VS_

56



Results

Evaluation
contrasts

Manipulations of “capability”

Size
Vs - ?
[
- VS - 2
[
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(Forced choice — Production)

o
(0]
I

o
(@]
|

o
N
|

o
N
|

(

Analogical
reasoning

SN

IS

0 1

# parameters
(log billions)

VS ) (
Reflective Word
reasoning prediction

=
2 47 DO 67
3 (S 22
T 0o c £
81 27 =g 4
()
28 o= N\
< 'S 0 - 8-_’_.5 2 4 \
3 Sg
5 <<
S ! . .
0 1 0 1
# parameters # parameters
(log billions) (log billions)

Pythia OLMo Gemma Llama-2 Mistral

VS )

Grammaticality

judgment
© 204
N2 N
>
5 E 1.5-
e
(O]
8= 1.0-
-
< I
® 0.5-
5
0.0 -
| |
0 1
# parameters
(log billions)

58



Results

Evaluation
contrasts

Manipulations of “capability”

Size

_VS_

v

_VS_

v

59



Results

Evaluation
contrasts

_VS_

_VS_

Manipulations of “capability”

Training time

?




Proportion correct

(

VS )

Analogical reasoning

0.6 -
0.4 -
Forced choice
Production
0.2 - | | |
0