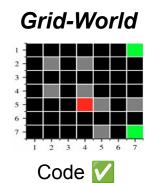


'Explaining RL Decisions with Trajectories': A Reproducibility Study

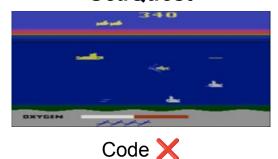
Karim Abdel Sadek, Matteo Nulli, Joan Velja, and Jort Vincenti

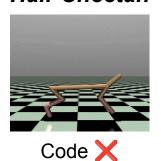
Motivation & Original Paper

- Previous work focused on salient features of the state of the agent
- Novelty: Look at trajectories encountered during training by the Offline RL agent
- New framework introduced by the authors [1].


[1] Deshmukh, Shripad Vilasrao, et al. "Explaining RL decisions with trajectories." arXiv preprint arXiv:2305.04073 (2023).

Claims of the Authors


- □ Removing Trajectories induces a lower Initial State Value
- Clusters present High Levelbehaviours
- □ Distant Trajectories influenceDecision of the agents
- Humans correctly identify determinant trajectories

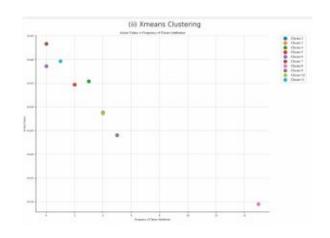

Methodology and Code Setup

SeaQuest

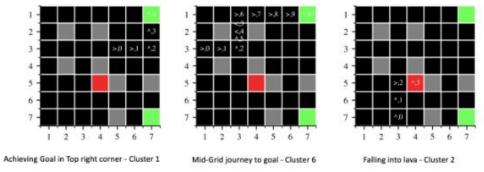
Half-Cheetah

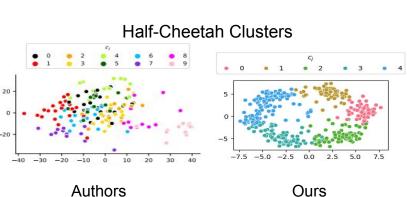
Breakout

Q*Bert

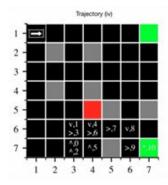

Claim 1: Removing trajectories reduces ISV

☐ Removing trajectories reduces Initial State Value.


Reproducibility: Varied results in				
different environments, supporting				
the original claim.				

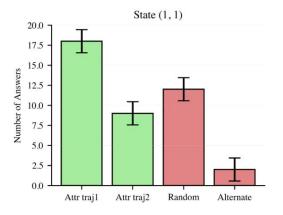

Extra experiments to see a correlation between ISV and trajectory attribution.

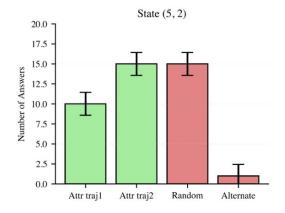
π	$\mathbb{E}[V(s_0)]$	$\mathbb{E}[\Delta Q_{\pi_{\text{orig}}}(s)]$	$\mathbb{E}[1(\pi_{\text{orig}}(s) \neq \pi_j(s))]$	$W_{ m dist}(d,d_j)$
Mean Clusters (Original Paper)	0.3027	0.0231	0.0821	0.0301
Mean Clusters(Reproduced)	0.3029	0.0230	0.0714	0.1098
$ \Delta $	0.0002	0.0001	0.0107	0.0797


Claim 2: Clusters have High-Level Behaviours

- Different Clusters represent High-Level Behaviours
- Reproducibility: We can identify similar High-Level Behaviours, but reproduction was not assured.
- ☐ We confirm the claim on Grid-World.
- We cannot validate it for Seaquest and Half-cheetah

Claim 3: Distant trajectories are relevant





- Distant trajectories influence RL agent's decisions.
- Claim weakly supported by their evidence, but reproducible.
- ☐ Extra experiments to further confirm the claim using formal metrics

Claim 4: Human Study

- Method: Interview-based approach, focusing on trajectory identification.
- Humans do have a good understanding. Accuracy is around 63%.
- Claim is not fully supported by the experiments.

Claim Verification Results

	Grid-World	Seaquest	Half-Cheetah	Breakout	Q*Bert
Removing trajectories	1	1	X	1	X
Cluster behaviours	1	X	X	?	?
Distant trajectories	1	?	?	?	?
Human study	?	?	?	?	?

Conclusion

■ Novel approach towards the understanding and the interpretability of RL decisions, even if at a early stage.

☐ Future Work: Possible extensions are Online RL agents, combining trajectory based method with classical ones, and many others.

