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Discussion & Conclusions

e Can we mitigate SB?

Although SGD has strong implicit regularization, we show that

In the initial epochs, the model learned by SGD can be explained noisy-label pre-training can successfully trap models in complex

by a linear classifier, and later as the epochs progress, SGD .
local minimas.

learns functions of increasing complexity.

e Overparameterized neural networks can learn

» Complex features are often overshadowed by the amplification more complex and diverse features with the @

right initialization. ,;

and replication of sitmpler features

o Ensembling and Adversarial training fail to effectively address
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the limitations imposed by this bias



