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Bayesian optimization for global optimization of black-box functions
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Which Gaussian processes to use as the prior? f ~ GP(u, k)
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Visualizations of interfaces are from
https://research.google/blog/pre-trained-gaussian-process
es-for-bayesian-optimization/

Challenges in BayesOpt

e BayesOpt is theoretically strong, but
its performance can suffer if the GP
prior isn't well-suited to the
problem.

e Users often need to carefully select
GP mean and kernel parameters.

Our interface: HyperBO

Selection of related tasks for
pre-training a GP.

e Better alignment with ground truth
user belief of the function.*

e Improve the performance of
BayesOpt methods.

* Under some assumptions.



Model pre-training in function spaces

e Approximations for objective function KL(ground truth GP || model)

o  Empirical KL divergence (EKL): divergence between an empirical estimate of the ground truth
model and the pre-trained model.

o Negative log likelihood (NLL): sum of negative log likelihoods of the pre-trained model for all
training functions.
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Pre-trained GPs achieve better posterior alignment
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GP Pre-training enhances the performance of Bayesian Optimization

Theoretical guarantees (informal)

1. Bounded posterior: The pre-trained GP posterior mean and variance are bounded by the ground truth
posterior mean and variance.

2. Near-zero regret bound: The regret of BayesOpt with a pre-trained GP is bounded.
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Example setup of HyperBO in our experiments

M Mean function
Input | NNencoder> representation

Kernel function



GP Pre-training enhances the performance of Bayesian Optimization

e PD1dataset: ~50,000 hparam evaluations of near-SOTA deep learning models
on image, text, and protein sequence datasets.

e >3x more efficient than the best competing methods.
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(Gaussian process pre-training makes
BayesOpt more effective and easier to use

Contact: wangzi@google.com
Website: https://ziw.mit.edu/

https://aithub.com/google-research/hyperbo/
https://aithub.com/gooagle-research/gpax

Google DeepMind


mailto:wangzi@google.com
https://ziw.mit.edu/
https://github.com/google-research/hyperbo/
https://github.com/google-research/gpax

