Causal Bandits for Linear Structural Equation Models

Burak Varıcı¹ Karthikeyan Shanmugam² Prasanna Sattigeri³ Ali Tajer⁴

¹Carnegie Mellon University

²Google India

³IBM Research

⁴Rensselaer Polytechnic Institute

NeurIPS 2024 Journal-to-conference track Original publication: Journal of Machine Learning Research, 24(297), 1-59. 2023

Sequential Design of Interventions

designing an optimal sequence of interventions

Questions:

- **structure learning:** which interventions reveal the most information?
- ▶ identifying causal effect: what is the smallest set of interventions needed?

Causal Bandits Problem Statement

Sequential selection of interventions: for $t \in \{1, \dots, T\}$

- **•** objective: choosing $a \in \mathcal{A}$ to maximize the expected reward $\mu_a \triangleq \mathbb{E}_{\mathbb{P}_a}[Y]$.
- ▶ Learner selects $a_t \in A$: intervene on a subset of nodes.
- lackbox Learner observes reward $Y(t) \sim \mathbb{P}_{a_t}(Y)$ and graph instance $X(t) \sim \mathbb{P}_{a_t}(X)$.

Regret minimization

Minimize expected cumulative regret

$$\mathbb{E}[R(T)] = T\mu_{a^*} - \mathbb{E}\left[\sum_{t=1}^T Y(t)\right]$$

Causal Bandits with Linear SEM

- Critical information for algorithm design

 - (i) causal structure \mathcal{G} (ii) interventional distributions $\{\mathbb{P}_a\}_{a\in\mathcal{A}}$
- \triangleright Our focus: known structure \mathcal{G} , unknown distributions
- ▶ Prior work binary random variables and/or atomic interventions.
- ► Linear Structural Equation Model:

$$X = B^{\top}X + \epsilon, \quad \epsilon = (\epsilon_1, \dots, \epsilon_N), \quad B \in \mathbb{R}^{N \times N}$$

- ▶ Intervention model: Soft intervention on node i changes the weights $[B]_i$ to $[B^*]_i$
 - ► Two mechanisms for each node
 - ▶ Intervention space $A = 2^{\mathbf{V}}$, so $|A| = 2^N$.
- Graph parameters:
 - ▶ d: maximum in-degree
 - L: length of the longest causal path.

LinSEM-UCB Algorithm

Algorithm: UCB-based + leverage causal relationships

Theorem (Upper bound)

$$\mathbb{E}[R(T)] = \tilde{\mathcal{O}}\left(d^{L + \frac{1}{2}}\sqrt{NT}\right)$$

Theorem (Minimax Lower bound)

$$\mathbb{E}[R(T)] \ge \Omega(d^{\frac{L}{2} - 2}\sqrt{T}).$$

Follow-up Results

Recent developments in causal bandits with soft interventions:

➤ Yan et al. (JSAIT 2024): Robust Causal Bandits for Linear Models. Known graph, linear SEMs: Similar regret results for varying weights, robust

➤ Yan et al. (AISTATS 2024): Causal Bandits with General Causal Models and Interventions. Known graph, general SCMs: Similar regret results for general causal models

Yan et al. (NeurIPS 2024): Linear Causal Bandits: Unknown Graph and Soft Interventions Unknown graph, linear SEMs: almost matching lower and upper bounds at $\mathcal{O}(d^{L/2})!$

At NeurIPS 2024

Causal Bandits for Linear Structural Equation Models

- ► Conference: Poster Session 2, Wednesday, Dec 11, 4.30-7.30pm
- ► Paper: https://jmlr.org/papers/v24/22-0969.html
- ► Code: https://github.com/bvarici/causal-bandits-linear-sem
- ► Contact: bvarici@andrew.cmu.edu