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Prediction and Causal Estimation

= One of the major successes of modern machine learning is their
powerful predictive capability.
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Prediction and Causal Estimation

= However, accurate prediction does not guarantee accurate causal
estimation.!
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Spurious association problem

= Some elements of the observed covariates x = (xq,x,-** ,xp) are
predictive to the outcome y, but they are not the true causes.

= Classical machine learning often relies on the empirical risk
minimization (ERM)

m‘}n R(a) =E[L(j(x; a),y)].

= ERM leverages causal and non-causal information in x.

= A parametric model §j(x; @) learned by ERM
1. is biased for causal estimation;

2. cannot generalize its prediction under interventions.
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= We will leverage multi-environment data to distinguish causality.
= Each environment e has distribution p°(X, Y).

= Observations per environment are (X{, Y?) ~ p(X,Y), e € 8.



Data generating process

Consider a linear structural equation model

Y — (B +¢ eeé

= &: a collection of environments.
= Sc{1,2,---,p}: the index set of direct causes.

= x: observed covariates; xg are the causes, x, g are the spurious
covariates.

= f": causal coefficients or direct causal effects; ¢ # 0, [51‘5 =0.

= Goal: (i) estimate S and p*; (ii) make predictions based on causes.



Formalize spurious association

= Spurious association is an endogeneity problem

x‘is_JéL g%, hence E[&°|x°] #0

= Possible reasons
1. Unobserved confounding y < € — x5
2. Observing descendents iy — x5

3. Observing colliders iy — x; < x5, X1,%, € X5



Assumptions

= (i) Linear DGP 1y « (B*)"x° + £¢; it will be relaxed to nonlinear models
for methodology

= (ii) Moment conditions: E[€°] =0, Var[ee],Var[x;:’ ] < oo for all
jef{1,2,---,p}

= (iii) Exogeneity of causes: the observed causes
xg 1L €,
which is weaker than standard assumption x° 1L €°.
= (iv) Invariance: across environments
E[y*[Pa(y°) = ¢] = E[y [Pa(y®) = c], foralle,e’ € &,

while p°(x) changes.



Invariance of causality

= Philosophy: constant conjunction
(Hume, 1740); Econometrics:
autonomy and modularity
(Haavelmo, 1944, Hoover 2008);
Computer Science: independent
causal mechanism (Scholkopf, et al.,
2021)

= Invariant Causal Prediction (Peters,
Biihlmann and Meinshausen, 2016)

= Invariant Risk Minimization
(Arjovsky et al., 2019)

A more comprehensive history is in
Peters et al. (2017), Chapter 2.!
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Our main idea

1. Find an idealized optimization problem with the causal coefficients as
the solution.

2. Relax it to be a feasible optimization problem with the causal
coefficients as a solution.

3. Restore the identification using multi-environment data.



Idealized optimization in an environment

= Consider a predictor §(x,a) = a'x

= Throughout, @ denotes the model parameters and * denotes the
unknown causal parameters.

= Direct ERM min, R(a) =E[(1/2)({(x, a) — y)z] produces biased
estimate @ # f* due to spurious association.

= Adding simple constraints will provide causal optimality
min R(a)
st.a;j=0, j¢S (theindex set of causes).

Its solution @& = p*.



First order condition

We will turn the constrained optimization into an unconstrained
optimization while keeping causal optimality.

= Derive the first order condition of constrained optimization by the
directional derivative method.

Directional derivative in direction v is

D, R(a):= %iﬁna(R(a +tov)—R(a))/t = (VR(a),v)

Principle: the first-order condition for optimality is that the directional
derivative in all feasible directions vanishes (Marban, 1969).



Feasible directions

min R(a)

s.t. (l]- = 0,

jES

= Feasible directions are where the optimizer can go without violating

the constraints. They are tangent to the constraint surface in R”.

= Our constraints g]-(a) =a;=0 forj¢s

= The feasible directions form a linear space % = span{e, : j € S} with

basis vector e;.

Constraint g(a)
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Single environment objective

= Given the feasible directions, the first order condition is
DejR(a) = (VR(a), ej) =0, forjes,
or equivalently written with Hadamard product o

IVR(a)o "l =0

= Relaxation: the causal coefficients * by construction is the optimum,
which satisfy the first order condition as

IVR(B*) o B[l =0.

= In other words,

B* € argmin||VR(a)o al|,. 1
a



No free lunch

= The objective min, [|[VR(a; X, Y) o a]l,
- Only depends on the observational data.
- Unlike R(a; X, Y), it has f* as an optima.

- Itis simple and easy to compute.

= However, the optima is not unique, which can be p*, dgry, 0, and
others.



Multi-environment objective

D

= Causal coefficients f* is invariant and shared across environments.

= We aggregate single-environment objectives over multiple
environments &

minfy(a) = = > (IVR'(@) o al, ). @

ees

= Due to invariance assumption: (1) p* € argminf,(a), and (2)
argmin, fe(a) =), argmin, || VR*(a) o all, so |&| 1 helps.



Last step

We need to remove the 0-vector from the minimizers if p* # 0

= If a set of variables C are known to be exogenous, i.e. Xj 1l e,jeC we
can safely regress over this set of variables (Approach 1).

= Modify the objective with @ = a o (1—-1¢) + 1,

LS IvR(@)o @l 3)

ecs

ml}nfg(a) = |(g°|

= We can show fz(*) = 0 while f¢(0) > 0 almost surely when . # 0

= Alternatively, we can use the risk function as a regularization as
R°(0) = R°(B*). It recovers ERM for one environment (Approach 2).

min —Z{||VR"(a)oa||2+7L R(@)}, A, >0. @)

| |e€é’



Algorithm

Conditional causal optimization (CoCo) by double gradient:

Algorithm 1 CoCo with known exogenous variables

input : Data D° = {Y<,X°}, X € ]R"ﬁ"?’; the risk function R® for each environment e € &; the
set of known non-descendant variables C; the predictor f(-).
output : Coefficient estimation o with causal interpretation.
Initialize o randomly
while not converged do
for e in € do
Compute the gradient of the empirical risk:

g°(a) =

Set & =ao(l—1c) + 1¢
Compute the optimization objective:

Lf(a) = llg°(a) o all,

end
Update a < o — 2665 L¢(ax) with step size n
end




Example

= The data generation follows

x5 — N (m5, (r))
X =N (S, (r)?)
y° «3x] +2x5 + A(0,1)
X <y + (0, (r*))
= The two environments
correspond to parameters

P, mY,y M) = (2,0.5,2),
i, m$,yP) = (3,-1,05), and
ﬁ* = (3, 2, 0)

CoCo optima (Two envs.)



Analytic connections with IRM

= Invariant Risk Minimization (Arjovsky et al., 2019) is a popular
approach for causal representation learning under spurious
association by solving

min D [ R'(a:f(; @) +2 (Vaumr oR (a0 £ 0)))” |

ees

Empirical risk IRM regularization

= We find for Linear-Gaussian and Linear-Bernoulli outcome models,
IRM regularization is a directional derivative

(VapoeroR(@; wa x))’ = ((VR*(a), a))?

= It explains some success of IRM because * € argmin,((VR’(a), a))?

= It suggests IRM regularization could fail because it is a loose lower
bound as ((VR(a),a@))? < plIVR(a) o alf3



Geometric connections with IRM

Back to the toy example, CoCo solutions are always less than that by IRM
regularization
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Identification

= The goal is to find sufficient conditions for the uniqueness of the
solutions for min, fy(a) = |17| Decs IVR (@) 0 @]l

= For each @ € argmin,, f¢(a), there exists H C {1,2,-- -, p} such that
a=(ay,a\y= 0)" and

VE[(y— aHxH)2] =

. . . . / .
= We call H an invariant set if regression on x;, x;; for any environments
/
e, e’ produces the same aj, = @&;;.



Sufficient conditions for identification

Theorem. Under Assumptions (i-iv) and (v) Effective interventions: there
is only one invariant sets H, C ¢ H € {1,2,--- ,p}. Then

Z”VRE(‘I)C"I]HZ,

p*= arg min —
| eeE

where @ =ao(1—-1c)+1c.

= The effectiveness can be checked from data, though it can be
computationally expensive.

= It guarantees the identification of the whole vector f*.
= We also provide a simple to check sufficient condition based on the

rank of Gram matrix. It guarantees identification of (. for the effects
of exogenous treatment variables in C.



Generalize to nonlinear models

= Consider the nonlinear data generation and predictor:
Yo f(Bxgr ) + e, i =f(Ax 7).

= The optimality of the causal model still holds for the constrained
optimization: min, R(a) s.t. a; =0,j ¢S

= The same optimization objectives can be derived using the directional
derivative similarly to the linear settings.

= This nonlinear model contains the fully-connected neural net as a
special case.



Robust prediction

= The fitted model has local optimality when applied to a new
environment.

= Proposition. Suppose @ minimizes CoCo objective with fo(a) = 0.
Suppose a new environment / satisfies

Pey) =D wptey), Y w,=1,

ecé eeé

then aaTan(a)Ia:& =0, © = supp(a).



Empirical studies



Causal estimation

= Consider 5 independent cases; each case is represented by a graph below
= Data in each case are collected from two environments

= Suppose X; is known as an exogenous variable
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Causal estimation

The mean absolute error of the p* estimates

Case 1 2 3 4 5

ERM 0.31 (0.06) 0.16 (0.00) 0.32 (0.00) 0.19 (0.03) 0.38 (0.01)
V-REx 0.16 (0.06) 0.11 (0.01) 0.44 (0.01) 0.13 (0.04) 0.06 (0.10)
RVP 0.10 (0.04) 0.10 (0.01) 0.43 (0.01) 0.11 (0.04) 0.05 (0.04)
Dantzig 0.54 (0.62) 3.23 (2.64) 4.95 (3.06) 0.43 (0.05) 0.20 (0.01)
IRMvl 2.12 (0.70) 0.01 (0.00) 0.02 (0.01) 2.17 (0.65) 0.72 (0.35)
CoCo 0.01 (0.00) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.00)

RVP, V-REx, Dantzig, IRM are related optimization methods.



Robust prediction: synthetic data

|

x1 X1 x1

(a) ERM, linear (b) CoCo, linear (c) ERM, nonlinear (d) CoCo, nonlinear

= X, is a true cause, x, is spurious, the DGP is linear, the yellow points
are data.

= Consider a linear predictor (correctly specified) and a nonlinear
predictor (misspecified).

= Heatmap is the predictive error. Causal optimization better generalizes
beyond the data region.



A nonlinear, non-Gaussian case
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= Data generation:

[ 20 40 60 80 [ 1000 2000 3000 5000

1A Iteration

4000

Regularization strength

X = S L (1)
y° « Categorical(py, -, px)

xg «— (1 —pe)Su;e +pe6uzl,

—— CoCo_Training
-- CoCo_Testing
IRM_Training
IRM_Testing
—— ERM_Training
-~ ERM_Testing

pe= N 1)/ S A g, 1), ky ~ Multinomial(1/K, - -, 1/K).

= Test in a new environment with distribution shift.



Robust prediction: unstructured data

Colored-MNIST (semi-synthetic):
= Data generation: Even/odd digits — y! € {0,1} — color € {green, red}.

Label: 1 Label: 0 Label: 1 Label: 0

w.p. pf wp. p;
> ->

= Covariates are the colored digits x € R?*28*2
= Causal: shape— y¢, Spurious: color— y;.

= Evaluate at a new environment with different label-color relationships.



Predictive accuracy

Predictor is a fully connected neural network.

1.0
3
8 038 —— CoCo_Training
b s ---- CoCo_Testing
206 J IRM_Training
; IRM_Testing
§0.4 —— ERM_Training
2 o — ---- ERM_Testing
2 /
021 1!
5000 10000 15000 20000 25000 30000
Iteration
Methods ERM IRM V-REx CoCo | Random guess Oracle
Test env. accuracy 31.1(0.3) 46.5(4.1) 31.8(1.4) 74.7(0.2) | 50 74.8

IRM (M. Arjovsky et al., 2019), V-REx (D. Krueger et al., 2020)



Robust prediction: real-world data

= Environments: camera locations.

= Classify coyotes or raccoons, y; € {0, 1}.

= Causal: animal shape — ¢, Spurious: physical factors — y5.

= Evaluate on the images taken at a new camera location.



Prediction accuracy

Predictive accuracy is evaluated with images from a new camera
location.

Wildlife
Training Environment = Testing Environment
ERM 99.6 (0.2) 58.4(0.8)
IRM 83.4(0.7) 84.9 (0.8)
V-REx 96.2 (0.4) 67.3 (1.6)
CoCo 86.1(0.3) 85.2 (0.3)

Random guess 50 50




Takeaway

= Causal optimization by double gradient enables accurate causal
estimation and robust prediction when there is spurious association.

= Multiple environments and the invariance assumption help identify
the causal model.

= It can potentially be applied to any differentiable model at large scale.

= Worth considering regularizations on the direction of derivatives,
beyond the magnitude of parameters.

= Representation learning?



= Thank you!

= M. Yin, Y. Wang, and D.M. Blei
Optimization-based Causal Estimation from Heterogeneous
Environments
Journal of Machine Learning Research, 2024

m.yin@ufl.edu



