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Motivation and Applications
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. Model: Multi-Armed Bandit (MAB) |

The MAB model overlooks user abandonment.




Exploration-Exploitation-Engagement: A Simple Model

Q M arms {aq,a,, --,ay}
d Consider K episodes. State at step h of the kth episode is Sy ;, € {0, 1}

d Bernoulli rewards with mean u(a;)
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Assumption

d The user is less likely to abandon the system when getting higher reward

q(Sk,h=s,Rk,h=r) < q(Sk,h=s’,Rk,h=r’) if s+r > s’+r'.
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Problem Definition

J

Baseline ™ : A genie-aided, optimal policy is always pulling the arm
with the highest mean

Regret for a given policy: the difference between the expected total
reward achieved by the optimal policy, T, and that achieved by the
given policy.
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Upper and Lower Confidence Bound (ULCB) oo meeeems

Leave the system with Like: Reward Ryn = 1

@ robability q(Si n, Ri,n) islike: Reward Ry, , =
d ULCB --- state-dependent bonus/penalty terms prERI el @ PeeRemerdfin 20

0 When state is 0, {i;(a)=q;(a) — logt+4loglogt

2N, (a)
1 1

sample mean number of times for which
arm a has been pulled

discourage exploration

O Whenstate is 1, [i;(a)=p;(a) + \/ log t-zl_li]L lé)a%logt encourage exploration
t

1 Choose arm a € argmax, i;(a)

1 KL-ULCB --- use KL divergence instead of Euclidean distance.




Main Results

1 Theoretically, KL-ULCB is asymptotically optimal. (number of episodes K — )
1 Empirically, KL.-ULCB performs significantly better than other algorithms.
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