
MCUCoder: Adaptive Bitrate Learned Video 
Compression for IoT Devices

Nobody thought about MCUs!

Ali Hojjat, Janek Haberer, Olaf Landsiedel

TLDR: A super-lightweight video compression designed for 
Microcontrollers that produces an adaptive bitstream, slashes bitrate by 
55% compared to M-JPEG (the only existing video encoder on MCUs).

M
-J
PE

G
M
CU

Co
de

r

(BPP / MS-SSIM)
0.27/ 6.27 0.30 / 7.54 0.37 / 9.87 0.43 / 11.36 0.69 / 15.77 0.73 / 16.12

0.08 / 7.04 0.16 / 11.49 0.24 / 13.35 0.31 / 14.63 0.73 / 17.93 0.77 / 18.00
(BPP / MS-SSIM)

0.08 / 6.53 0.15 / 9.76 0.21 / 11.32 0.28 / 11.95 0.69 / 14.74 0.74 / 14.87
(BPP / MS-SSIM)

0.25 / 5.77 0.28 / 6.55 0.34/ 8.05 0.40 / 9.16 0.68 / 12.46 0.72 / 12.73
(BPP / MS-SSIM)

...

...

...

...

...

...

...

...

Latent:

…

La
te

nt
 S

am
pl

in
g 

D
ur

in
g 

Tr
ai

ni
ng Iter = 1

Iter = 2

Iter = 3

Iter = 4

Iter = N

Sorted by importance

The most important 
channel

The least important 
channel

MCUCoder is here for IoT!
Ultra-lightweight Encoder:
• Only 10.5K parameters and 350KB RAM footprint.
Energy Efficient:
• INT8 quantized encoder for low power 

consumption using DSP and CMSIS-NN.
Adaptive Bitrate Streaming:
• Latent channels are ordered by importance during 

training, enabling zero-cost adaptive streaming.

• An example of MCUCoder bitrate adaptation 
under dynamic network conditions, with the 
control module regulating the number of channels 
to transmit.

• MCUCoder is as energy efficient as M-JPEG. • MS-SSIM and bpp for a sample video, with 
“[0:k]” indicating the number of channels used 
for decoding.Resource demands of MCUCoder on nRF5340 and 

STM32F7 MCUs.

• MCUCoder is an ultra-lightweight encoder (10.5K 
params, 350KB RAM) for IoT devices.

• Its INT8 encoder reduces bit rate by 55.6% with 
JPEG-level energy efficiency. 

• It supports adaptive bitrate streaming for robust 
video transmission.

• MCUCoder outperforms M-JPEG.

MCUCoder (Quantized) BD-rate results. The anchor is M-JPEG.

MCUCoder in practice

��� ��
 ��� ��
 ���

�!('�% &��!) "���%%�

���

���

	���

	
��

	���

	���


���

�
�
��
�
��

���������

��

��

������

�

�

�

�

����$� &

����$� &�!#(��

��� ��
 ��� ��� ��

��$#�!�"���%�����!!�

�




	�

	


	�

	�

	


�
��
��

��

������

��

��
����
���� ��"
���� ��"���$
�

� 
�� 	��� 	
�� 
���
�� ��&"��" #$�%%�"!���$� ��� %�

�

	




�

�




�'
$$�
!&
�� 
��

������
����"��$

���
���

��
��"
��$
�




	�

	



�

�!
�$
�(
�� 
��

	
��
 	����

Energy and current consumption of MCUCoder

���

��


���

���

��
�

�����
�����
���	�

���
�
�����
�����

���
�
�����
�����

������
������
������

� �� ��� ��� ��� ��� 	��
�����������


��

����

����

����

�
��

�
��
��

��

!"
#$

% !
:3
x2
24

x2
24

Importance based ordered

Co
nv

 7
x7

, 1
6

Co
nv

 5
x5

, 1
6

Co
nv

 3
x3

, 1
2

Sending channels 
based on available 

bandwidth

Received

De
Co

nv
, ↑

!"
#$
%. !

!"
#$
%. "

!"
#$
% .$ …

!"
#$
% .%

!"
#$
%. &

!"
#$
%. '

!"
#$
%&
'. !

!"
#$
%&
'. "

…
Zeroing out 
unreceived At

te
nt

io
n 

(x
1)

 
Re

sB
ot

tle
(x

3)

At
te

nt
io

n 
(x

1)
 

Re
sB

ot
tle

(x
3)

At
te

nt
io

n 
(x

1)
 

Re
sB

ot
tle

(x
3)

x2
De

Co
nv

, ↑

At
te

nt
io

n

!"
#$

% !
:3
x2
24

x2
24

INT8 Quantized

Encoder (on MCU) Decoder (on Cloud)

��� ��� ���
���'�$(

����& !'
�"!������	
�
�")������	
�

�����������	
�
�& !'"�"�������
�

���������	
�
��##,���������
�*"%�������		�
���������	��
������������

����	�������


!!

!!"#

!!"$

!!"%

Bi
tr

at
e 

Co
nt

ro
l

In
pu

t

En
c.

De
c.…

Sending filters one by one

!!

Re
ce
iv
ed

MCUCoder Architecture

arXiv GitHub

The rapid growth of camera-based IoT devices, 
used in surveillance, smart farming, and more, 
demands efficient video compression. However, 
IoT devices face two significant challenges:
• Constrained Hardware: Only 1–2MB RAM and 

low computational resources.
• Limited and Unstable Internet: Real-time 

video transmission requires adaptive bitrate.
Existing solutions:
• Traditional and deep encoders demand high 

computational resources, memory, and energy, 
making them unsuitable for MCUs.

M-JPEG is the only viable option for MCUs.

MS-SSIM and PSNR How does it impact battery? Streaming channels

Conclusion

Table 1: MCUCoder (Quantized)
BD-rate results. The anchor is M-
JPEG.

Type Dataset MS-SSIM PSNR

Video MCL-JCV -55.65% -47.39%
UVG -55.59% -35.28%

Image KODAK -55.75% -43.01%
CLIC -49.54% -38.02%

Table 2: Resource demands
of MCUCoder on nRF5340 and
STM32F7 MCUs.

nRF5340 STM32F7

Exec (ms) 1,969 237
RAM (KB) 344 (33%) 360 (17%)
Flash (KB) 100 (10%) 107 (5%)

���

��


���

���

��
�

�����
�����
���	�

���
�
�����
�����

���
�
�����
�����

������
������
������

� �� ��� ��� ��� ��� 	��
�����������


��

����

����

����

�
��

�
��
��

��

Figure 8: MS-SSIM and bpp for the SunBath video
from UVG [2] dataset. [0:k] shows the use of the first k
channels (out of 12) for decoding.

limited hardware resources. Additionally, MCUCoder has 12 "stacked" channels in its latent space,
which provides 12 levels of quality that can be dynamically adjusted based on the available network
bandwidth. In Fig. 8, we illustrate the bpp and MS-SSIM for each frame in a video from the UVG
dataset for all 12 levels of quality. The results show that using more channels for decoding leads to a
higher MS-SSIM, which verifies the effectiveness of the proposed stochastic dropout training. The
PSNR results are reported in the Appendix B.

Image compression: To assess the image compression capabilities of MCUCoder, we conduct
experiments on the CLIC [53] and KODAK [58] datasets, see Fig. 7. The results in Table 1 show that
MCUCoder achieves an impressive average bitrate reduction of 55.75% on the KODAK dataset and
49.54% on the CLIC dataset, compared to JPEG. The PSNR results are reported in the Appendix A.

Latent ordering and DCT-JPEG alignment: Fig. 4 shows the 12 latent channels obtained after
training with the stochastic dropout method. The initial channels capture low-frequency information,
while subsequent channels focus on high-frequency details. Interestingly, this behavior mirrors the
Discrete Cosine Transform (DCT) basis matrix employed in JPEG compression.

� 
�� 	��� 	
�� 
���
�� ��&"��" #$�%%�"!���$� ��� %�

�

	




�

�




�'
$$�
!&
�� 
��

������
����"��$

���
���

��
��"
��$
�




	�

	



�

�!
�$
�(
�� 
��

	
��
 	����

Figure 9: Energy consumption of
MCUCoder compared to M-JPEG
for compressing one frame on the
nRF5340.

Performance on MCUs: We implement MCUCoder using
TFLite-Micro [56] and Zephyr RTOS [59] on STM32F7 and
nRF5340 MCUs. The STM32F7 has 2 MB Flash, 2 MB
RAM, and a Cortex-M7 processor, while the nRF5340 has 1
MB Flash, 512 KB RAM, and a Cortex-M33 processor, with
both supporting DSP and CMSIS-NN acceleration [25]. As
reported in Table 2, MCUCoder uses 360 KB of RAM on the
STM32F7 and 344 KB on the nRF5340, which is remark-
ably low and suitable for such constrained IoT devices. To
compare MCUCoder’s energy consumption against M-JPEG,
we measured the energy consumption of MCUCoder and the
optimized version of JPEG encoder for the Cortex-M series
[60] on the nRF5340, see Fig. 9. The results indicate that
MCUCoder matches JPEG’s energy consumption while significantly outperforming it in terms of
BD-rate, see Table 7. The nRF5340 shows considerably slower performance than the STM32F7 for
both MCUCoder and M-JPEG, suggesting that it is better suited for event-driven applications rather
than real-time streaming.

5 Conclusion
We introduced MCUCoder, an ultra-lightweight asymmetric video compression model for resource-
constrained IoT devices. With just 10.5K parameters and a 350KB memory footprint, compared to
M-JPEG, MCUCoder reduces bitrate by over 55% on both the MCL-JCV and UVG datasets while
matching the efficiency of M-JPEG. Its adaptive bitrate streaming ensures smooth video transmission
under fluctuating network conditions, making it ideal for edge applications.

6

Table 1: MCUCoder (Quantized)
BD-rate results. The anchor is M-
JPEG.

Type Dataset MS-SSIM PSNR

Video MCL-JCV -55.65% -47.39%
UVG -55.59% -35.28%

Image KODAK -55.75% -43.01%
CLIC -49.54% -38.02%

Table 2: Resource demands
of MCUCoder on nRF5340 and
STM32F7 MCUs.

nRF5340 STM32F7

Exec (ms) 1,969 237
RAM (KB) 344 (33%) 360 (17%)
Flash (KB) 100 (10%) 107 (5%)

���

��


���

���

��
�

�����
�����
���	�

���
�
�����
�����

���
�
�����
�����

������
������
������

� �� ��� ��� ��� ��� 	��
�����������


��

����

����

����

�
��

�
��
��

��

Figure 8: MS-SSIM and bpp for the SunBath video
from UVG [2] dataset. [0:k] shows the use of the first k
channels (out of 12) for decoding.

limited hardware resources. Additionally, MCUCoder has 12 "stacked" channels in its latent space,
which provides 12 levels of quality that can be dynamically adjusted based on the available network
bandwidth. In Fig. 8, we illustrate the bpp and MS-SSIM for each frame in a video from the UVG
dataset for all 12 levels of quality. The results show that using more channels for decoding leads to a
higher MS-SSIM, which verifies the effectiveness of the proposed stochastic dropout training. The
PSNR results are reported in the Appendix B.

Image compression: To assess the image compression capabilities of MCUCoder, we conduct
experiments on the CLIC [53] and KODAK [58] datasets, see Fig. 7. The results in Table 1 show that
MCUCoder achieves an impressive average bitrate reduction of 55.75% on the KODAK dataset and
49.54% on the CLIC dataset, compared to JPEG. The PSNR results are reported in the Appendix A.

Latent ordering and DCT-JPEG alignment: Fig. 4 shows the 12 latent channels obtained after
training with the stochastic dropout method. The initial channels capture low-frequency information,
while subsequent channels focus on high-frequency details. Interestingly, this behavior mirrors the
Discrete Cosine Transform (DCT) basis matrix employed in JPEG compression.

� 
�� 	��� 	
�� 
���
�� ��&"��" #$�%%�"!���$� ��� %�

�

	




�

�




�'
$$�
!&
�� 
��

������
����"��$

���
���

��
��"
��$
�




	�

	



�

�!
�$
�(
�� 
��

	
��
 	����

Figure 9: Energy consumption of
MCUCoder compared to M-JPEG
for compressing one frame on the
nRF5340.

Performance on MCUs: We implement MCUCoder using
TFLite-Micro [56] and Zephyr RTOS [59] on STM32F7 and
nRF5340 MCUs. The STM32F7 has 2 MB Flash, 2 MB
RAM, and a Cortex-M7 processor, while the nRF5340 has 1
MB Flash, 512 KB RAM, and a Cortex-M33 processor, with
both supporting DSP and CMSIS-NN acceleration [25]. As
reported in Table 2, MCUCoder uses 360 KB of RAM on the
STM32F7 and 344 KB on the nRF5340, which is remark-
ably low and suitable for such constrained IoT devices. To
compare MCUCoder’s energy consumption against M-JPEG,
we measured the energy consumption of MCUCoder and the
optimized version of JPEG encoder for the Cortex-M series
[60] on the nRF5340, see Fig. 9. The results indicate that
MCUCoder matches JPEG’s energy consumption while significantly outperforming it in terms of
BD-rate, see Table 7. The nRF5340 shows considerably slower performance than the STM32F7 for
both MCUCoder and M-JPEG, suggesting that it is better suited for event-driven applications rather
than real-time streaming.

5 Conclusion
We introduced MCUCoder, an ultra-lightweight asymmetric video compression model for resource-
constrained IoT devices. With just 10.5K parameters and a 350KB memory footprint, compared to
M-JPEG, MCUCoder reduces bitrate by over 55% on both the MCL-JCV and UVG datasets while
matching the efficiency of M-JPEG. Its adaptive bitrate streaming ensures smooth video transmission
under fluctuating network conditions, making it ideal for edge applications.

6


