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INTRODUCTION
❖ Deep Neural Networks (DNNs) achieve state-of-the-art performance in 

domains like computer vision and speech processing.
❖ Deployment Challenges: High computational and storage demands make 

DNNs unsuitable for resource-constrained edge devices.
❖ Traditional uniform quantization and pruning often fail to maintain accuracy, as 

layers contribute unequally to model performance.
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PROPOSED METHOD

PROBLEM ANALYSIS & MOTIVATION
❖ Motivation: Fixed compression approaches often overlook the varying 

importance of different layers in DNN, leading to performance degradation.
❖ Mixed-precision approaches could improve efficiency.
❖ Solution: Adaptive quantization and pruning methods that tailor bit-widths and 

sparsity thresholds layer-wise for optimal trade-offs.

❖ Contribution: Introduced an adaptive layer-wise quantization and pruning 
method for enhancing DNN efficiency while preserving accuracy.

❖ Results: The adaptive approach maintained accuracy with minimal loss across 
varying bit-widths. Outperformed uniform quantization and pruning techniques..

❖ Architecture Advantage: Our approach optimizes each layer's precision, 
achieving efficient models, ideal for resource-constrained devices.

❖ Limitations: Our method may be influenced by the weight values used in layer 
importance computation, requiring further investigation.

❖ Future Work: Investigate other advanced model compression techniques for 
further model optimization on diverse datasets to validate its generalizability.

CONCLUSION

❖ CIFAR-10 classification task is a standard problem in ML and computer 
vision, where the goal is to classify images into one of 10 categories.

❖ Layer Importance is computed to guide quantization and pruning decisions.

❖ Iterative Optimization: Layers ranked by importance. Sequential optimization 
adjusts bit-width and pruning thresholds, validating performance at each step.

❖ Layer-wise Adaptive Pruning: Adapts pruning per layer to balance size 
reduction and accuracy. Iterative optimization ensures maximal pruning with 
tolerable accuracy loss. Adaptive pruning threshold is tuned for each layer.

❖ Layer-wise Adaptive Quantization: Adapts bit-width per layer to balance size 
reduction and accuracy. Iterative optimization ensures minimal bit-width with 
tolerable accuracy loss.

❖ Performance Threshold: Ensures that performance degradation remains well 
within an acceptable margin, ensuring model reliability during model pruning 
and quantization.

Figure: Model accuracy vs. compression ratio across different DNN architectures: a) VGG19, b) ResNet18, c) ResNet34. 
Results for different variants of fixed and adaptive pruning and quantization approaches. Our method is highlighted with star marker.

❖ Layer Importance computation using metrics like normalized parameter 
proportion, layer entropy, layer variance, and layer sparsity.
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❖ Dataset: CIFAR-10 dataset comprises 60,000 32x32 color images across 10 
classes, with data normalized to [0, 1] and augmented via horizontal flips and 
random crops.

❖ DNN Models Tested: VGG19, ResNet18, ResNet34
❖ Implementation details: 

○ Trained from scratch for 100 epochs. 
○ SGD optimizer with learning rate=0.02, batch size=128, and Cross-Entropy loss. 

❖ Hyper-parameters Setting: 
○ All weights are equal (sum to 1) for layer importance computation. 
○ Weight quantization from 1-bit to 8-bit precision. 
○ Pruning thresholds started from 99.7% (k(l)=3) to no pruning (k(l)=0).

❖ Evaluation Metrics: Accuracy & average bit-width
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Analysis of individual layers: a) varying bit-precisions and b) varying pruning percentages

Table: Performance comparison with existing methods across DNNs

❖ Baseline: VGG19: 91.16%, ResNet18: 86.06%, ResNet34: 86.22%.
❖ Fixed-bit quantization (e.g., 3-bit) led to significant accuracy drops.
❖ Fixed pruning (e.g., 75%) too resulted in notable accuracy degradation.
❖ Our adaptive method (Quantization only, Pruning only, and Combined) 

achieves near-baseline accuracy while significantly reducing model size.
❖ Model Comparison: Proposed Method vs. APoT and LIEI-NNQ:

○ Existing methods suffered higher accuracy losses at low average bit-widths.
○ Our approach maintained accuracy at significantly lower average bit-widths.

❖ Average bit-width reduction: Quantization (combined pruning+Q)
○ VGG19: 2.24 bits (1.08), 
○ ResNet18: 3.41 bits (2.66), 
○ ResNet34: 4.18 bits (2.42).

Method Model #Parameters 
(M)

Avg. 
bit-width

Parameters 
Size (MB)

Accuracy 
difference (in %)

Proposed AQP VGG19 20.04 1.08 2.72 0.00%
Proposed AQP ResNet18 11.69 2.66 3.17 0.00%
Proposed AQP ResNet34 21.8 2.42 6.52 -0.09%
APoT ResNet18 11.69 4 5.87 -0.40%
APoT ResNet18 11.69 3 4.38 -0.84%
APoT ResNet18 11.69 2 2.92 -1.75%
LIEI-NNQ ResNet18 11.69 1.96 2.77 -1.55%
APoT MobileNetV2 3.47 4 1.74 -4.25%
APoT MobileNetV2 3.47 3 1.30 -10.39%
APoT MobileNetV2 3.47 2 0.87 -24.45%
LIEI-NNQ MobileNetV2 3.47 3.32 1.45 -9.42%

Figure: Model accuracy vs. compression ratio across different DNN architectures: a) VGG19, b) ResNet18, c) ResNet34. Results 
for different variants of fixed and adaptive pruning and quantization approaches. Our method is highlighted with star marker.

OBJECTIVES
❖ Introduce a layer-wise quantization method that assigns bit-widths based on 

layer importance to optimize model size without compromising accuracy.
❖ Design an adaptive pruning strategy that identifies and prunes less 

important parameters effectively while maintaining model performance.
❖ Combine Quantization and Pruning: Investigate the synergy of adaptive 

quantization and pruning to achieve compact yet accurate DNNs.


