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PROBLEM ANALYSIS & MOTIVATION

Fixed compression approaches often overlook the varying
domains like computer vision and speech processing. importance of different layers in DNN, leading to performance degradation.

< Deployment Challenges: High computational and storage demands make % Mixed-precision approaches could improve efficiency.
DNNSs unsuitable for resource-constrained edge devices. % Solution: Adaptive quantization and pruning methods that tailor bit-widths and

< Traditional uniform quantization and pruning often fail to maintain accuracy, as sparsity thresholds layer-wise for optimal trade-offs.
layers contribute unequally to model performance.

INTRODUCTION

o Deep Neural Networks (DNNs) achieve state-of-the-art performance in < Motivation:
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< Combine Quantization and Pruning: Investigate the synergy of adaptive 5333335335 555555588 - S Y5 s g s a5 D98
quantization and pruning to achieve compact yet accurate DNNs. Analysis of individual layers: a) varying bit-precisions and b) varying pruning percentages

PROPOSED METHOD
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CIFAR-10 classification task is a standard problem in ML and computer
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—f vision, where the goal is to classify images into one of 10 categories.
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< Layer Importance computation using metrics like normalized parameter | |% Layer-wise Adaptive Quantization: Adapts bit-width per layer to balance size
proportion, layer entropy, layer variance, and layer sparsity. reduction and accuracy. lterative optimization ensures minimal bit-width with
tolerable accuracy loss.

Pruned and Quantized Model
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Parameters in layer [

IVp(l) = Variance of layer [
P Total parameters in the model Ny(l) =log(e—1+ . o : :
max;, (Variance of layer k) % Performance Threshold: Ensures that performance degradation remains well
NG Entropy of layer I S() Number of zero or near-zero activations in layer I within an acceptable margin, ensuring model reliability during model pruning
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and quantization.

Bit-precision of the model Total number of activations in layer [

Importance(l) = wp - Np(l) + wg - Ng(l) + wy - Ny (1) + wg - S(1) Tmargin(l) = Tmargin X Importance(l)

RESULTS

Baseline: VGG19: 91.16%, ResNet18: 86.06%, ResNet34: 86.22%.
Fixed-bit quantization (e.g., 3-bit) led to significant accuracy drops.
% Fixed pruning (e.g., 75%) too resulted in notable accuracy degradation.

% Our adaptive method (Quantization only, Pruning only, and Combined)
achieves near-baseline accuracy while significantly reducing model size.

Trai f tch for 1 hs. i
°  Trained from scratch for 100 epochs % Model Comparison: Proposed Method vs. APoT and LIEI-NNQ:
o SGD optimizer with learning rate=0.02, batch size=128, and Cross-Entropy loss.

% Hyper-parameters Setting:

o All weights are equal (sum to 1) for layer importance computation. % Average bit-width reduction: Quantization (combined pruning+Q)

o VGG19: 2.24 bits (1.08),
o ResNet18: 3.41 bits (2.66),

% Dataset: CIFAR-10 dataset comprises 60,000 32x32 color images across 10 X2
classes, with data normalized to [0, 1] and augmented via horizontal flips and &
random crops.

“ DNN Models Tested: VGG19, ResNet18, ResNet34
< Implementation details:

o Existing methods suffered higher accuracy losses at low average bit-widths.
o Qur approach maintained accuracy at significantly lower average bit-widths.

o Weight quantization from 1-bit to 8-bit precision.
o Pruning thresholds started from 99.7% (k(1)=3) to no pruning (k(1)=0).

L
< Evaluation Metrics: Accuracy & average bit-width b = » " b(l) - S(I) - Np(1) o ResNet34: 4.18 bits (2.42).
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& Contribution: Introduced an adaptive layer-wise quantization and pruning
method for enhancing DNN efficiency while preserving accuracy.
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Results: The adaptive approach maintained accuracy with minimal loss across
varying bit-widths. Outperformed uniform quantization and pruning techniques..
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Architecture Advantage: Our approach optimizes each layer's precision,
achieving efficient models, ideal for resource-constrained devices.
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