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Schedule-Free Learning

Schedule-Free Optimizers in PyTorch.

Preprint: The Road Less Scheduled

@ 69 Commits

6 months ago

last month
6 months ago
6 months ago
6 months ago

last month
6 months ago
3 months ago
6 months ago

3 months ago

7 =

Authors: Aaron Defazio, Xingyu (Alice) Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok

Cutkosky
TLDR Faster training without schedules - no need to specify the stopping time/steps in advance!
pip install schedulefree

Primary implementations are SGDScheduleFree and AdamwWScheduleFree . We also have a

AdamWScheduleFreeReference version which has a simplified implementation, but which uses more memory. To

combine with other optimizers, use the ScheduleFreeWrapper version.

A Jax implementation is availiable as part of Optax.




Schedule-Free Learning

1. An alternative to schedules that doesn’t need to know the
stopping time T in advance (supports anytime stopping)

2. Obtains the theoretically optimal rate of convergence for
Lipschitz convex problems

3. Works in practice: matches or outperforms cosine schedules!

Proof: AlgoPerf Challenge self-tuning track winner



Test Accuracy (%)

Faster early convergence!

Smooth loss curves!
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Schedule-Free (76.90% SE 0.03)
Cosine Schedule (76.90% SE 0.00)

Step-Wise Schedule (76.49% SE 0.07)
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THEORY-PRACTICE MISMATCH #1
We never use SGD in the precise form as we analyze!

In practice we return the last iterate, whereas we analyze the
average iterate.

X1 = Xy — Vi8¢
R
X = — X
T t
T

=1



SGD with averaging gives exactly worst-case optimal rates for
several complexity classes, notably the convex + Lipschitz
setting.

Without averaging you get a log(T) worse rate



But what do experiments suggest?

Folk-law: Averaging is bad and unnecessary, it’s an artifact of
the analysis not reflective of real world problems.

Folk-law: The y, = D/G\/; schedule is bad, use one of the
empirically better schedules we found via trial and error.

A flat schedule is even worse!



A Perspective on Scheduling

The schedules used by experimentalists

/ are not replacing this D/Gﬁ part!

They are actually replacing averaging.

High-Performance schedules arise naturally from

theory by analyzing the last iterate x;rather than x;



Theoretically Optimal Schedules

D
(for convex problems) V't = G\ﬁ’ - {1 -

Linear Decay Schedules give

exactly worst-case optimal f()_CT) _f* <

convergence rates without ﬁ
averaging!

EXACT CONVERGENCE RATE OF THE LAST ITERATE
IN SUBGRADIENT METHODS
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Linear Decay works extremely well in practice (when combined with warmup) ...

Almost always better than cosine.

Cosine largely wastes the last 5% of the run by using too small a learning rate

Cosine & Linear
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Stop using cosine! It is complete nonsense



Linear Decay emulates Averaging

Gradient from t=1 appears in all termsin
the average: weight 1

Gradient from t=T/2 appears in half the
terms in the in the average: weight 1/2

Gradient from t=3T/4 appears in 1/4 of the
terms in the in the average: weight 1/4

.... same weighting as for linear decay



THEORY-PRACTICE MISMATCH #2

If inear decay emulates averaging ... and works so well ...
..... why doesn’t averaging work?



Averaging needs
momentum (done right)




Schedule-Free Learning Paradigm

Interpolation beta=0.9

(A kind of momentum) M y, = = p)z, + px,

Equivalent to:

1 [
X, = —ZZZ-
: =1



Even for convex problems,
Schedule-Free outperforms classical averaging and linear decay
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Primal Averaging (81.2 SE 0.24)
60 = | Polyak Averaging (80.8 SE 0.05)
—— Schedule-Free (83.4 SE 0.00)

0) 20 40 60 80 100
Epoch
smalINORB
100 —
90 —
80 —
0 Schedule-Free (98.1 SE 0.01)
LD Schedule (96.5 SE 0.01)
60 — Primal Averaging (90.8 SE 0.94)
Polyak Averaging (90.8 SE 0.01)
] | | | | |
0 20 40 60 80 100

Epoch

Accuracy (%)

100 —

98 —

96 —

94 —

92 —

90 —

o0
o
I

Accuracy (%)
)
S

N
)

USPS

Polyak Averaging (98.0 SE 0.01)
—— Schedule-Free (99.5 SE 0.01)
Primal Averaging (98.1 SE 0.04)
LD Schedule (98.9 SE 0.02)

I I I I
40 60 30 100

Sensorless

LD Schedule (89.2 SE 0.01)
—— Schedule-Free (89.7 SE 0.01)

Primal Averaging (83.0 SE 0.63)
Polyak Averaging (85.5 SE 0.01)

I I I I I
20 40 60 30 100

Epoch




Schedule-Free does momentum in a different,
more gradual way....

f = 0.9 results in the current gradient evaluation point

y containing 0.1 of the most recent gradient g,_;

Vi = (1 _,B)Zt ,th
Classical momentum does the same thing! 0.1 of the
21 = 5 — Y VIOW most recent gradient is included in the step

Xt+1:<1 t11>xt=t1 mt+1:ﬁmt+(1_ﬁ)vf(xt)

|
'

Xpy1 = Ay — QT

But classical momentum incorporates the rest of the
gradient over the next ~10 steps, whereas Schedule-
Free incorporates it much slower, of the reminder of
optimization



For general convex Lipschitz functions

Schedule-Free gives exactly optimal worst-case rates for ANY
beta, whereas classical momentum for any fixed beta gives
worse rates.

Theorem 1. Suppose F'is a convex function, and (1, ..., (7 is an i.i.d. sequence of random variables

<

such that F = E| f(x, ()| for some function f that is G-Lipschitz in x. For any minimizer x,, define
D = ||z, — x,|| and v = D/(GVT). Then for any B € [0, 1], Schedule-Free SGD ensures:




Varying cosine-schedule length shows how Schedule-Free closely tracks
the Pareto frontier of Loss v.s. training time.
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Schedule-Free AdamW also won the
MLCommons AlgoPerf 2024
Algorithmic Efficiency Challenge Self

Tuning Track!

Schedule-Free runs have much smoother loss
curves and faster convergence
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Thank you!



