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Algorithm STRONGLEARNER such that
For all Precision € € (0,1).
Given Sufficiently large m = m(e) sample S ~ D™.
Given Examples of a target concept on sample ¢|g.

Satisfies With high probability returns a classifier h = STRONGLEARNER(c|g) that
approximates ¢ well on the entire domain. More precisely,

errp(h) = xlz%[h(x) #c(x)] <e.
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Algorithm W, such that
Given Set S C X.
Given Examples of the target concept c|s.
Given Any distribution (weighing) D over S.

Satisfies Returns a classifier h = W, (c|g, D) that approximates c a bit better than chance on
the training data. More precisely,

errp(h) = xlirD[h(x) # c(x)] < % — .
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Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;
o Often win kaggle™ competitions with small datasets and/or tabular data.

@ Drawbacks:

o Achieving the best performance often takes 1000s of iterations.
e Sequential nature: even with many computers available, it's not obvious how to speed it up.
e Infeasible for large datasets or “expensive” base learners.
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Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do

2 | parallel for t < 1 to 7" do
‘ hp,t < Query W, with some distribution D, ;
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5 return Classifier H with generalization error not much worse than ADABOOST's (O(szi‘Sl), with
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

e Boosting algorithm with P =1 and T' = exp(O(%)).

o Lower bound: any significant parallelization of Boosting requires exponential total work.
o Lyu, Wu and Yang (2024):

o P=0(m) and T = exp(O(dR?)) - In L.

° Improvtgc? |§V?Iel’ bound. P( ( )) !

@ A gap remains: this work closes it.
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We’'ll need to understand how performance on a
(sub)sample generalises to the population (sample)



Parallelizing Boosting: step

D TM

Tl T2 T3 T4 Ty T Ty Ty T9 T T11 T12 T13 Ti4 T15 Tle=m

ds  CELELE B EEE T




Parallelizing Boosting: step

Qi ~ D"
¥ v v

D TW

T2 T4 x5 xe 7 s [To][Tio] 211 Ti2 T13 Ti4 Tis Ti=m

ds  CELEEEEELLFEERET




Parallelizing Boosting: step

Q2 ~ D"

D TW

T1 T2 Te x7 Tg Ty T T11 [T2)[TE] T4 Tis Tie=m

ds  CELELELEEEEEEEEEEE
\

S\
clo, [+[+1+]+]- cloy I Lr L -]




Parallelizing Boosting: step

Q3 ~ D"

T1 T2 T3 T5 Te X7 T8 z1o T T12 [T] 214 215 [Tickm

ds L EEEEET
Y 3 E R P o 5 R




Parallelizing Boosting: step

Tl T2 T3 T4 Ty T Ty Ty T9 T T11 T12 T13 Ti4 T15 Tle=m

ds LI T EEEEEEET
o, [+][+]+]+]- clo, [+[-]+]+]- cos [-[-]+[-]+

T T T
W’Y(C|Q1) W’Y(C|Q2) W’Y(C|Q3)
v v v

o FIEEINTE  holo.FIEIEEIE  fsloEIETEEE



Parallelizing Boosting: step

D TM

Ty X2 T3 T4 Ts Teg Ty T8 Ty T1o T11 T12 T13 Ti4 T15 Tle=m

ds  CELELEEEBEEET




Parallelizing Boosting: step

D TW

Ty X2 T3 T4 Ts Teg Ty T8 Ty T1o T11 T12 T13 Ti4 T15 Tle=m

ds  CEEEEEEEEEFFEEETR

Bag of hypotheses used to perform multiple boosting steps
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parallel for t < 1 to T do

h «+ Query W, on subsample following the current distribution (D(,—1)r+1)
Add h to H,,
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S
forr <~ 1to R do
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Parallel Boosting Algorithm: Sketch

Input : Training data c|s,y-weak learner W,

1 D; < Uniform distribution over the m examples
2 for p+ 1to P do

3
4
5
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H, 0
parallel for ¢t < 1 to T do
h «+ Query W, on subsample following the current distribution (D(,_1)r+1)
Add h to H,
S
for r < 1 to R do

h(,_1)g4r ¢ Simulate J-weak learner: search H,, for h s.t. errp h) <

D[

(pfl)R+T(

D, 1)R4rt1 < Usual “ADABOOST update” of D, _1)r,

11 return Majority aggregation of hy, hy, ... hpp
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Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:
o
o Large divergence:
e Hard to find good h € H;.

o
e Otherwise
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Contributions

Recall:
@ T := Number of parallel calls to W,.
@ R := Number of steps of “simulated” ~/2-weak learner.
@ P := Number of iterations of those.
@ d = VC("base classifiers”).

o Given R e N,
e With high probability, the algorithm described performs well (generalization error no worse

than ADABOOST's).
e Satisfies

_ In|S|
e P= O(ﬁ)’
o T = ¢l

e Matching lower bounds (up to logarithmic factors) for all values of R.



Thank youl!

We'll be presenting this work’s poster in 20 minutes from now (at West Ballroom A-D).
Come chat with us!
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Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

3 CHECKBAGy, (c|s, D1) M

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

ls BRI R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).
e Classical LT: large enough (O(d/+?)) samples are likely to be (y-)representative:

errg~pr(h) —errp,(h)| <v/2 (with high probability
Q 1 1
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Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

3 CHECKBAGy, (c|g, D>)

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

ls HEE R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).

@ Does performance on subsamples from D generalise to performance under Do, D3, ...7

lerrg~py (h) —errp, (h)| < 777 (with high probability)
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