Optimal Parallelization of Boosting

Arthur CW. da Cunha* Mikael Mgller Hggsgaard® Kasper Green Larsen
Aarhus University - Denmark

NeurlPS
2024

*Looking for jobs

Binary classification 2

Binary classification 3

e Domain: X' (and a distribution D over it)

Binary classification 4

e Domain: X' (and a distribution D over it)

Binary classification 5

e Domain: X' (and a distribution D over it)
o Label space: Y, with |[V| =2

Binary classification 6

e Domain: X' (and a distribution D over it)
o Label space: Y, with |[V| =2

Binary classification 7

e Domain: X' (and a distribution D over it)
o Label space: Y, with |[V| =2
o Target concept: ¢c: X — Y

N
d
e

Yy “CAT” “Doag”

Binary classification 8

e Domain: X' (and a distribution D over it)
o Label space: Y, with |[V| =2
o Target concept: ¢c: X — Y

N
d
e

“CAT” “DOG”

Binary classification 9
e Domain: X' (and a distribution D over it)

o Label space: Y, with |[V| =2
@ Target concept: ¢c: X — Y

Ts

Binary classification
e Domain: X' (and a distribution D over it)

o Label space: Y, with |[V| =2
@ Target concept: ¢c: X — Y

¢ EEEEE

Binary classification

e Domain: X' (and a distribution D over it)
o Label space: Y, with |[V| =2
@ Target concept: ¢c: X — Y

Goal: Strong Learner

¢ O B A B E B B] -

Goal: Strong Learner

c L e e e e e e e e e e e T e e e e e e e e e D T e e e e e e T T -

Goal: Strong Learner

e We only see a sample S ~ D™ (m = 8)

xg 6 1 T4 T3 T3 x7

&) T
ji S S N N N S
(GO I3 153 3 15 2 5 I I I I I N I I I 53 I I 6 D

Goal: Strong Learner

e We only see a sample S ~ D™ (m = 8)
T T8 6 T Ty T3 T 7
b S S N N N S
¢ [l D e e e e e e e e e e e e e T e e -

cls

Goal: Strong Learner

xg 6 1 T4 T3 T3 7

o
ji S S N N N S
(GO I3 163 63 150 2 53 1 I I G I I I 3 A A 3 B A N 3 A A A

cls =+ [+ |+|+
T
LEARNER(c|s)

1
hls =TT+ =T+ 1]

Goal: Strong Learner

STRONGLEARNER(c|g)
1
hls HRERERER

I
With high probability

Goal: Strong Learner (more formally)

Algorithm STRONGLEARNER such that

Goal: Strong Learner (more formally)

Algorithm STRONGLEARNER such that
For all Precision € € (0,1).

Goal: Strong Learner (more formally)

Algorithm STRONGLEARNER such that
For all Precision € € (0,1).

Given Sufficiently large m = m(e) sample S ~ D™.

Goal: Strong Learner (more formally)

Algorithm STRONGLEARNER such that
For all Precision € € (0,1).
Given Sufficiently large m = m(e) sample S ~ D™.

Given Examples of a target concept on sample ¢|g.

Goal: Strong Learner (more formally)

Algorithm STRONGLEARNER such that
For all Precision € € (0,1).
Given Sufficiently large m = m(e) sample S ~ D™.
Given Examples of a target concept on sample ¢|g.

Satisfies With high probability returns a classifier h = STRONGLEARNER(c|g) that
approximates ¢ well on the entire domain.

Goal: Strong Learner (more formally)

Algorithm STRONGLEARNER such that
For all Precision € € (0,1).
Given Sufficiently large m = m(e) sample S ~ D™.
Given Examples of a target concept on sample ¢|g.

Satisfies With high probability returns a classifier h = STRONGLEARNER(c|g) that
approximates ¢ well on the entire domain. More precisely,

errp(h) = xlz%[h(x) #c(x)] <e.

Starting from: Weak Learner

cds [l lr [l [l -] e]+]-]

Starting from: Weak Learner

cds Ll [l]l e]+]-]
T
WEAKLEARNER(c|g)
I

s G- T

Starting from: Weak Learner

cds Ll [l]l e]+]-]

T

WEAKLEARNER - (c|g)

Ms LR ET =T+ T+ =+]

v/ at least 50% -+ ~y

Starting from: Weak Learner

D

T wy r3 m4 T5 Te TT Ty Tg Tip Tl T2 T3
cds =+l =[= [[+ [+][]

T

WEAKLEARNER ~(c|s, D)
U 3 B B A S Ea B B S R

v/ at least 50% + ~y

Starting from: Weak Learner

T
ds Ll LLL]

T

WEAKLEARNER ~(c|s, D)

Starting from: Weak Learner

D Area(l) > 50% +

T wy r3 m4 T5 Te TT Ty Tg Tip Tl T2 T3
cds == l+[=[+l+[=[=[+[+]+]+]-]

T

WEAKLEARNER ~(c|s, D)

Starting from: Weak Learner (more formally)

Algorithm WEAKLEARNER, such that

Starting from: Weak Learner (more formally)

Algorithm W, such that

Starting from: Weak Learner (more formally)

Algorithm W, such that
Given Set S C X.

Starting from: Weak Learner (more formally)

Algorithm W, such that
Given Set S C X.

Given Examples of the target concept c|s.

Starting from: Weak Learner (more formally)

Algorithm W, such that
Given Set S C X.
Given Examples of the target concept c|s.

Given Any distribution (weighing) D over S.

Starting from: Weak Learner (more formally)

Algorithm W, such that
Given Set S C X.
Given Examples of the target concept c|s.
Given Any distribution (weighing) D over S.

Satisfies Returns a classifier h = W, (c|g, D) that approximates c a bit better than chance on
the training data.

Starting from: Weak Learner (more formally)

Algorithm W, such that
Given Set S C X.
Given Examples of the target concept c|s.
Given Any distribution (weighing) D over S.

Satisfies Returns a classifier h = W, (c|g, D) that approximates c a bit better than chance on
the training data. More precisely,

errp(h) = xlirD[h(x) # c(x)] < % — .

ADABOOST

T T2 z3 Tq z5 Te z7 I8 T9 T T T2

cls HERERARERREER

ADABOOST

Wy (cls, D1)

C|s

T T2 z3 Tq z5 Te z7 I8 T9 T T T2

HE SN RARREEE

ADABOOST

W, (cls, D1)

‘[T T2 z3 Tq z5 Te z7 I8 T9 T T T2
hils
cls +l+-(++] -+]+]+]-

ADABOOST

Wi(els, D) T

[T NI~ NN~ ¥ ¥

T T2 z3 Tq z5 Te z7 I8 T9 T T T2

hils
cls +l+-(++] -+]+]+]-

ADABOOST

T T2 z3 Tq z5 Te z7 I8 T9 T T T2

hils
cls +l+-(++] -+]+]+]-

W“TD” LU UL

ADABOOST

Wy (cls, D2)

C|s

T T2 z3 Tq z5 Te z7 Iy T9 Tio T T2

Ll =l =L = [e []

ADABOOST

Ty T2 z3 Tq z5 Te z7 Iy T9 Tio T T2

hals
cls +l+-(+]+] -+]+]+]-

W“TD” LU UL

ADABOOST

W, (cls, D2)

[0L

A A

Ty T2 z3 Tq z5 Te z7 Iy T9 Tio T T2

hals
cls +l+-(+]+] -+]+]+]-

ADABOOST

W, (cls, D2)

‘[Ty T2 z3 Tq z5 Te z7 Iy T9 Tio T T2
hals
cls +l+-(+]+] -+]+]+]-

ADABOOST

Wy (cls, Ds)

C|s

ADABOOST

W, (cls, D3)

‘[Ty T2 z3 Tq z5 Te z7 I8 T9 Ti0 T T2
hs|s
cls +l+-+]+] -+]+]+]-

ADABOOST

W, (cls, D3)

‘[Ty T2 z3 Tq z5 Te z7 I8 T9 Ti0 T T2
hs|s
cls +l+-+]+] -+]+]+]-

ADABOOST

W, (c|s, D3)

Ty T2 z3 Tq z5 Te z7 I8 T9 Ti0 T T2

hs|s
cls +l+-+]+] -+]+]+]-

ADABOOST: Aggregation

h1
ha
hs3
T

MAJORITY (hy1, ha, h3)

|
sign(¥, () IR TR

Boosting in practice

@ State-of-the-art in practice:

Boosting in practice

@ State-of-the-art in practice:

o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);

Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;

Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;
o Often win kaggle™ competitions with small datasets and/or tabular data.

Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;
o Often win kaggle™ competitions with small datasets and/or tabular data.

@ Drawbacks:

Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;
o Often win kaggle™ competitions with small datasets and/or tabular data.
@ Drawbacks:
o Achieving the best performance often takes 1000s of iterations.

Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;
o Often win kaggle™ competitions with small datasets and/or tabular data.
@ Drawbacks:

o Achieving the best performance often takes 1000s of iterations.
e Sequential nature: even with many computers available, it's not obvious how to speed it up.

Boosting in practice

@ State-of-the-art in practice:
o Gradient boosters: e.g.,, XGB0OST (Chen and Guestrin, 2016) and LIGHTGBM (Ke et al.,
2017);
o Base learners: low to medium depth decision trees;
o Often win kaggle™ competitions with small datasets and/or tabular data.

@ Drawbacks:

o Achieving the best performance often takes 1000s of iterations.
e Sequential nature: even with many computers available, it's not obvious how to speed it up.
e Infeasible for large datasets or “expensive” base learners.

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do
3 ‘ hp,t < Query W, with some distribution D, ;

1

2
3
4

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered
Input : training examples c|s, y-weak learner W,
for p+ 1to P do

parallel for t < 1 to 7" do

‘ hp,t < Query W, with some distribution D, ;

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4 ...

5 return Classifier [with generalization error not much worse than ADABOOST’s (C)(d

72"S|)' el
d = VC("base classifiers"))

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4 ...

5 return Classifier [with generalization error not much worse than ADABOOST’s (C)(d

72"S|)' el
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4 ...

5 return Classifier [with generalization error not much worse than ADABOOST’s (C)(d

72"S|)' el
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4 ...

5 return Classifier H with generalization error not much worse than ADABOOST's (C~)(72f1‘5|
d = VC("base classifiers"))

), with
o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

e Boosting algorithm with P =1 and T' = exp(O(d]W#)).

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4 ...

5 return Classifier H with generalization error not much worse than ADABOOST's (C~)(72f1‘5|
d = VC("base classifiers"))

), with
o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

e Boosting algorithm with P =1 and T' = exp(O(d]W#)).

o Lower bound: any significant parallelization of Boosting requires exponential total work.

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4 ...

5 return Classifier H with generalization error not much worse than ADABOOST's (C~)(72f1‘5|
d = VC("base classifiers"))

), with
o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

e Boosting algorithm with P =1 and T' = exp(O(d]W#)).

o Lower bound: any significant parallelization of Boosting requires exponential total work.
o Lyu, Wu and Yang (2024):

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered
Input : training examples c|s, y-weak learner W,

1 forp«+ 1to P do

2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4

5 return Classifier H with generalization error not much worse than ADABOOST's (C)(vﬂ\sl)’ with
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):
e Boosting algorithm with P =1 and T' = exp(O(d]W#)).

o Lower bound: any significant parallelization of Boosting requires exponential total work.
o Lyu, Wu and Yang (2024):

o P= O(:‘Jg) and T = exp(O(dRz)) ~1n}y.

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered
Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do
2 | parallel for t < 1 to 7" do

3 ‘ hp,t < Query W, with some distribution D, ;
4

5 return Classifier H with generalization error not much worse than ADABOOST's (C)(vﬂ\sl)’ with
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):
e Boosting algorithm with P =1 and T' = exp(O(d]W#)).
o Lower bound: any significant parallelization of Boosting requires exponential total work.

o Lyu, Wu and Yang (2024):
e P= O(:‘Jg) and T = exp(O(dRz)) ~ln%.
e Improved lower bound.

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do

2 | parallel for t < 1 to 7" do
3 ‘ hp,t < Query W, with some distribution D, ;
4 .

5 return Classifier H with generalization error not much worse than ADABOOST's (C)(vﬂ\sl)’ with
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

e Boosting algorithm with P =1 and T' = exp(O(d]W#)).

o Lower bound: any significant parallelization of Boosting requires exponential total work.
o Lyu, Wu and Yang (2024):

o P=0(m) and T = exp(O(dR?)) - In L.

° Improvtgc? |§V?Iel’ bound. P(()) !

@ A gap remains

Parallelizing Boosting: Formal framework and previous works

Class of Boosting algorithms considered

Input : training examples c|s, y-weak learner W,
1 forp«+ 1to P do

2 | parallel for t < 1 to 7" do
‘ hp,t < Query W, with some distribution D, ;

w

4

5 return Classifier H with generalization error not much worse than ADABOOST's (O(szi‘Sl), with
d = VC("base classifiers"))

o E.g., ADABOOST: P = @(%) and T =1 (no parallelism).
o Karbasi and Larsen (2024):

e Boosting algorithm with P =1 and T' = exp(O(%)).

o Lower bound: any significant parallelization of Boosting requires exponential total work.
o Lyu, Wu and Yang (2024):

o P=0(m) and T = exp(O(dR?)) - In L.

° Improvtgc? |§V?Iel’ bound. P(()) !

@ A gap remains: this work closes it.

Parallelizing Boosting

D TM

Tl T2 T3 T4 Ty T Ty Ty T9 T T11 T12 T13 Ti4 T15 Tle=m

ds CELELE B EEE T

Parallelizing Boosting: step

D TW

T2 T4 x5 xe 7 s [To][Tio] 211 Ti2 T13 Ti4 Tis Ti=m

ds CEEEEEEEEEFEEERET

Parallelizing Boosting: step

D TW

T2 T4 x5 xe 7 s [To][Tio] 211 Ti2 T13 Ti4 Tis Ti=m
ds [ILLLLLITLLLLTELIT]
clq EIEIEIEIE

Parallelizing Boosting:

T2 T4 x5 xe 7 s [To][Tio] 211 Ti2 T13 Ti4 Tis Ti=m

EEBEnEEEnREESEEE
]/

cls

clQ BEGES
T
W, (¢c|q, Uniform(Q))
v

hlq [+[-]

Parallelizing Boosting:

[F 22 [E3] 24 25 w6 x7 s [T9o][Tio] 211 212 13 14 T

T16=m

CELELEEEL LB

cls

clq T
T

W’Y
hlq [+[-]

Parallelizing Boosting: step

Q~D"
¥ v v

D T+ﬁﬁﬁ1mjﬁ+ﬁuuf“#JT+

T2 T4 x5 xe T7 Ts [To][Tio] 211 Ti2 T13 Ti4 Tis Ti=m

ds L LEEECEE T
clo]+ +]=]

T

W’Y(ClQ)

<
hlg +T+TET+ 1]

T

77

1
h

Parallelizing Boosting: step

We’'ll need to understand how performance on a
(sub)sample generalises to the population (sample)

Parallelizing Boosting: step

D TM

Tl T2 T3 T4 Ty T Ty Ty T9 T T11 T12 T13 Ti4 T15 Tle=m

ds CELELE B EEE T

Parallelizing Boosting: step

Qi ~ D"
¥ v v

D TW

T2 T4 x5 xe 7 s [To][Tio] 211 Ti2 T13 Ti4 Tis Ti=m

ds CELEEEEELLFEERET

Parallelizing Boosting: step

Q2 ~ D"

D TW

T1 T2 Te x7 Tg Ty T T11 [T2)[TE] T4 Tis Tie=m

ds CELELELEEEEEEEEEEE
\

S\
clo, [+[+1+]+]- cloy I Lr L -]

Parallelizing Boosting: step

Q3 ~ D"

T1 T2 T3 T5 Te X7 T8 z1o T T12 [T] 214 215 [Tickm

ds L EEEEET
Y 3 E R P o 5 R

Parallelizing Boosting: step

Tl T2 T3 T4 Ty T Ty Ty T9 T T11 T12 T13 Ti4 T15 Tle=m

ds LI T EEEEEEET
o, [+][+]+]+]- clo, [+[-]+]+]- cos [-[-]+[-]+

T T T
W’Y(C|Q1) W’Y(C|Q2) W’Y(C|Q3)
v v v

o FIEEINTE holo.FIEIEEIE fsloEIETEEE

Parallelizing Boosting: step

D TM

Ty X2 T3 T4 Ts Teg Ty T8 Ty T1o T11 T12 T13 Ti4 T15 Tle=m

ds CELELEEEBEEET

Parallelizing Boosting: step

D TW

Ty X2 T3 T4 Ts Teg Ty T8 Ty T1o T11 T12 T13 Ti4 T15 Tle=m

ds CEEEEEEEEEFFEEETR

Bag of hypotheses used to perform multiple boosting steps

Parallel Boosting Algorithm: Sketch

Input : Training data c|s,y-weak learner W,

Parallel Boosting Algorithm: Sketch

1 D; < Uniform distribution over the m examples

Parallel Boosting Algorithm: Sketch

2 for p+ 1to P do

Parallel Boosting Algorithm: Sketch

3 Hy« 0

Parallel Boosting Algorithm: Sketch

3 Hy« 0
4 parallel fort < 1 to T do

Parallel Boosting Algorithm: Sketch

H, 0
parallel for t < 1 to T do

h «+ Query W, on subsample following the current distribution (D(,—1)r+1)
Add h to H,,

o o & W

Parallel Boosting Algorithm: Sketch

Parallel Boosting Algorithm: Sketch

S
7 forr<1to Rdo
8 h(, 1)r4r < Simulate J-weak learner: search H,, for h s.t. errp,_,,,, (h) <

D[=
o2

p—1

Parallel Boosting Algorithm: Sketch

S
7 forr<1to Rdo
8 h(, 1)r4r < Simulate J-weak learner: search H,, for h s.t. errp,_,,,, (h) <

9

D[=
o2

p—1

o =~

Parallel Boosting Algorithm: Sketch

S
forr <~ 1to R do

h(,_1)r4r ¢ Simulate 3-weak learner: search H,, for h s.t. errp

D, 1)R4r41 < Usual “ADABOOST update” of D, _1)r,

(pfl)R+T(

h)

<

D[

[V

Parallel Boosting Algorithm: Sketch

11 return Majority aggregation of hy, hy, ... hpp

Parallel Boosting Algorithm: Sketch

Input : Training data c|s,y-weak learner W,

1 D; < Uniform distribution over the m examples
2 for p+ 1to P do

3
4
5
6

9
10

H, 0
parallel for ¢t < 1 to T do
h «+ Query W, on subsample following the current distribution (D(,_1)r+1)
Add h to H,
S
for r < 1 to R do

h(,_1)g4r ¢ Simulate J-weak learner: search H,, for h s.t. errp h) <

D[

(pfl)R+T(

D, 1)R4rt1 < Usual “ADABOOST update” of D, _1)r,

11 return Majority aggregation of hy, hy, ... hpp

[V

Proof strategy 100

Main challenge

e Bag H,: hypotheses trained on samples from D(,_1)g41-

Proof strategy 101

Main challenge

e Bag #1: hypotheses trained on samples from D;.

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:

o Large divergence:

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:
o
o Large divergence:
e Hard to find good h € H;.

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:
o
o Large divergence:
e Hard to find good h € H;.

Proof strategy (assuming p = 1 for simplicity)

Main challenge

e Bag #1: hypotheses trained on samples from D;.
@ Easy to find good h € H; for the first step.

@ Then we change the distribution but not the bag.

@ Track the divergence from starting point: KL(D, || Dy).

@ Low divergence:
o
o Large divergence:
e Hard to find good h € H;.

o
e Otherwise

Contributions

Recall:
@ T := Number of parallel calls to W,.
@ R := Number of steps of “simulated” ~/2-weak learner.
@ P := Number of iterations of those.
@ d = VC("base classifiers”).

Contributions

Recall:
@ T := Number of parallel calls to W,.
@ R := Number of steps of “simulated” ~/2-weak learner.
@ P := Number of iterations of those.
@ d = VC("base classifiers”).

@ Given R € N,

Contributions

Recall:
@ T := Number of parallel calls to W,.
@ R := Number of steps of “simulated” ~/2-weak learner.
@ P := Number of iterations of those.
@ d = VC("base classifiers”).

@ Given R € N,

e With high probability, the algorithm described performs well (generalization error no worse
than ADABOOST's).

Contributions

Recall:
@ T := Number of parallel calls to W,.
@ R := Number of steps of “simulated” ~/2-weak learner.
@ P := Number of iterations of those.
@ d = VC("base classifiers”).

o Given R e N,
e With high probability, the algorithm described performs well (generalization error no worse

than ADABOOST's).
e Satisfies

_ In|S|
e P= O(ﬁ)’
o T = ¢l

Contributions

Recall:
@ T := Number of parallel calls to W,.
@ R := Number of steps of “simulated” ~/2-weak learner.
@ P := Number of iterations of those.
@ d = VC("base classifiers”).

o Given R e N,
e With high probability, the algorithm described performs well (generalization error no worse

than ADABOOST's).
e Satisfies

_ In|S|
e P= O(ﬁ)’
o T = ¢l

e Matching lower bounds (up to logarithmic factors) for all values of R.

Thank youl!

We'll be presenting this work’s poster in 20 minutes from now (at West Ballroom A-D).
Come chat with us!

Parallelizing Boosting: steps

D,

M

xy T2 x3 Ty x5 Te x7 xs r9 T Tl T12

cls EEEERERRREER

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

CHECKBAGy;, kﬁk[klkﬁkLkrkrkLkrkykLH

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

cls BRI R RRREEE

Parallelizing Boosting:

steps

Goal Simulate a 7y/2-weak learner.

Cls

D,

% CHECKBAGy, (c|s, D1) M

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

BRI R RRREEE

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

3 CHECKBAGy, (c|s, D1) M

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

ls BRI R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

3 CHECKBAGy, (c|s, D1) M

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

ls BRI R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).
e Classical LT: large enough (O(d/~?)) samples are likely to be (-)representative

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

3 CHECKBAGy, (c|s, D1) M

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

ls BRI R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).
e Classical LT: large enough (O(d/+?)) samples are likely to be (y-)representative:

errg~pr(h) —errp,(h)| <v/2 (with high probability
Q 1 1

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

CHECKBAGy, (c|s, D1) M
L hy|s

cls +-+|+]|-|+|-|-|-1+]|+]|-

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

CHECKBAGy;, (c|s, D1) = LI 7

\
7
xy T x3 Ty x5 Te x7 xs r9 T Tl T12

cls +-+|+]|-|+|-|-|-1+]|+]|-

Parallelizing Boosting:

steps

Goal Simulate a 7y/2-weak learner.

3 CHECKBAGy, (c|g, D>)

Cls

D,

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

HEE R RRREEE

Parallelizing Boosting:

steps

Goal Simulate a 7y/2-weak learner.

3 CHECKBAGy, (c|g, D>)

cls

D,

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

HEE R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).

Parallelizing Boosting:

steps

Goal Simulate a 7y/2-weak learner.

3 CHECKBAGy, (c|g, D>)

cls

D,

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

HEE R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).

@ Does performance on subsamples from D generalise to performance under D>?

Parallelizing Boosting: steps

Goal Simulate a 7y/2-weak learner.

D,

3 CHECKBAGy, (c|g, D>)

xy T x3 Ty x5 Te x7 xs r9 T Tl T12

ls HEE R RRREEE

@ 71 contains weak-hypotheses for subsamples following D).

@ Does performance on subsamples from D generalise to performance under Do, D3, ...7

lerrg~py (h) —errp, (h)| < 777 (with high probability)

References |

B
B

Chen, Tiangi and Carlos Guestrin (2016). ‘XGBoost: A Scalable Tree Boosting System.’.
In: KDD. ACM, pp. 785-794. 1SBN: 978-1-4503-4232-2.

Karbasi, Amin and Kasper Green Larsen (2024). ‘The Impossibility of Parallelizing
Boosting'. In: Proceedings of The 35th International Conference on Algorithmic Learning
Theory. Ed. by Claire Vernade and Daniel Hsu. Vol. 237. Proceedings of Machine Learning
Research. PMLR, pp. 635-653. URL:
https://proceedings.mlr.press/v237/karbasi24a.html.

Ke, Guolin et al. (2017). ‘LightGBM: A Highly Efficient Gradient Boosting Decision Tree'.
In: NIPS.

Lyu, Xin, Hongxun Wu and Junzhao Yang (2024). ‘The Cost of Parallelizing Boosting'. In:
Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024,
Alexandria, VA, USA, January 7-10, 2024. Ed. by David P. Woodruff. SIAM,

pp. 3140-3155. poOI: 10.1137/1.9781611977912.112. URL:
https://doi.org/10.1137/1.9781611977912.112.

https://proceedings.mlr.press/v237/karbasi24a.html
https://doi.org/10.1137/1.9781611977912.112
https://doi.org/10.1137/1.9781611977912.112

	References

