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Background

● Most benchmarks measure LLMs’ innate capabilities 
(out-of-the-box performance) on a batch of task instances

● They do NOT measure LLMs’ ability to improve over time 
when exposed to a sequence of task instances
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Benchmark Setting: Input-Feedback Sequence
● An online streaming setting, which exposes the LLM to an 

input-feedback sequence
● Input: a natural language instruction / question
● Feedback: correctness
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How to “Improve” the LLMs?

● To enhance LLMs’ capabilities over time, we can design an LLM 
“agent”: an LLM parameterized by 𝞱 and augmented with 
additional components 
○ Prompts
○ RAG memory
○ RAG retriever
○ Other creative components

● Design update algorithm to improve these components
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Example: A RAG-Based Simple Baseline

● Idea: store past experience in RAG memory M
○ At each time step i, store (input, output, feedback) in M

● Retrieve them in the future for in-context learning
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Goal: Design Methods to Improve Agents!

● Update parameters 𝞱, RAG memory, RAG retriever, prompts, 
… or other creative components you can come up with!
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Tasks and Datasets

● We choose a variety of tasks and datasets
● For each dataset, we randomly assign a time step to 

each data instance to build the streaming sequence
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Experiments

● We try various non-streaming and streaming methods
● General finding: streaming > non-streaming
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What Makes Effective Streaming Strategies?

● We try various non-streaming and streaming methods
● General finding: streaming > non-streaming

What makes some streaming methods 
more effective than others?
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Only Save Correct LLM Output to RAG Memory

● Saving only the correct LLM self-generated outputs to 
RAG memory is more beneficial for performance boost

● Collecting incorrect self-output even hurts performance

zero-shot
(dashed)
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Sharing Memory Across Multiple LLMs

● Make different LLMs take turns to solve problems at 
each time step, and share the RAG memory together

● Same averaged inference cost of using a single LLM!

Free boost



For Details, Check Out our Paper and Code!

Paper Code

https://arxiv.org/abs/2406.08747 https://github.com/stream-bench/stream-bench


