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1.1. Research Overview

 Research Task: Multiple Choice Question-based LLM Knowledge Eval

 Challenge: Data Contamination; Limited Test Scenarios → Untruthful Eval

 Solution: A Knowledge-invariant Perturbation-based Eval Toolkit
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1.2. Contributions

 We propose PertEval to unveil the real knowledge capacity of LLMs,  marking a 

significant step towards more trustworthy LLM evaluation.

 We re-evaluate six LLMs using PertEval. Evaluation results reveal overestimated 

performance of LLMs and their uncertainty to specious knowledge.

 We demonstrate the vulnerability of LLMs to different perturbation strategies in 

PertEval and provide insights for the refinement of knowledge capacity.
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2. Architecture of PertEval

 Content-level Perturbation

 Knowledge-invariant paraphrasing

 Format-level Perturbation

 Five different strategies

 Knowledge Capacity Analysis

 Response Consistency Analysis

 Response Pattern Analysis
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3. Knowledge Invariance Verification

 Verification Method: Human-based & LLM-based scoring (min: 1; max: 5)

 Experiment Dataset: A subset of MMLU covering all 4 major topics

 Findings: PertEval  obtains high KI scores (≥ 3.6 for C-Math; mostly ≥ 4.0 for others)

 Conclusion: PertEval can indeed generate knowledge-invariant perturbed datasets
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4.1. Response Consistency Analysis

 Evaluation Metric: ACC@Consist (Ratio of questions that are correctly answered on 

both the original & perturbed datasets)

 Finding: Overestimated knowledge capacity on the origninal dataset
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4.1. Response Consistency Analysis

 Evaluation Metric: Performance Drop Rate (PDR); Recall of Performance (ROP)

 Finding: 1. The sensitivity of LLMs to perturbations differs a lot; 2. The effect of 

perturbations differ a lot; 3. All LLMs are sensitive to SwapPos, the global order change.
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4.2. Response Pattern Analysis

 Evaluation Method: Count & Visualize & Compare response patterns on the original & 

perturbed datasets.

 Finding: For most LLMs, the ratio of multiple selection including the correct one significantly 

increases on the perturbed dataset, indicating their uncertainty to incorrect knowledge.
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5. Empowering LLMs’ Capacity
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 Method: Supervised fine-tuning llama-3-8b-instruct using perturbed W-History & P-Medicine

 Finding: 

 Stimulation Phenomenon: For format-level perturbations, only fine-tuning the model with a subset 

of perturbed data can significantly improve its overall performance stability in all perturbed data. 



5. Empowering LLMs’ Capacity
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 Method: Supervised fine-tuning llama-3-8b-instruct using perturbed W-History & P-Medicine

 Finding: 

 Lack of Transferability: For content-level perturbations, SFT on a subset of the perturbed datasets 

cannot significantly improve its performance on other perturbed subsets (subjects). 



6. Conclusion
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 One trustworthy evaluation toolkit - PertEval

 Two response analysis methods - consistency & pattern analyses

 Three evaluation metrics - ACC@Consist, PDR, ROP

 Four significant experiments 

 Five format-level perturbations

 Six perturbations in total for PertEval
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