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What are attribution maps

...and why is it hard to evaluate them?

Model

Goldfish

[1] Selvaraju et al. (2017). “Grad-CAM: Visual explanations from
deep networks via gradient-based localization.” In: ICCV

[2] Sundararajan et al. (2017). “Axiomatic attribution for deep
networks.” In: ICML
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What are attribution maps

...and why is it hard to evaluate them?

Attribution Model

Integrated
Gradients [2]

Grad-CAM [1]

No ground truth explanation!

Goldfish
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Related work

...and its limitations

0.9 — Goldfish

[1] Selvaraju et al. (2017). “Grad-CAM: Visual explanations from deep
networks via gradient-based localization.” In: ICCV
[4] Samek et al. (2017). “Evaluating the visualization of what a deep neural
network has learned.” In: IEEE Trans. Neural Networks Learn. Syst.
[5] Hesse et al. (2023). “FunnyBirds: A synthetic vision dataset for a part-
\5\1&_‘%’;’,‘ based analysis of explainable Al methods.” In: ICCV
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Related work

...and its limitations

10.1 — Goldfish

— Qut-of-domain issues

[1] Selvaraju et al. (2017). “Grad-CAM: Visual explanations from deep
networks via gradient-based localization.” In: ICCV

[4] Samek et al. (2017). “Evaluating the visualization of what a deep neural
network has learned.” In: IEEE Trans. Neural Networks Learn. Syst.
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Related work

...and its limitations

— Qut-of-domain issues

— Information leakage
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Related work

...and its limitations

10.1 — Goldfish

— Qut-of-domain issues

[1] Selvaraju et al. (2017). “Grad-CAM: Visual explanations from deep

— Information leakage
- networks via gradient-based localization.” In: ICCV
— SynthetIC data [4] Samek et al. (2017). “Evaluating the visualization of what a deep neural

network has learned.” In: IEEE Trans. Neural Networks Learn. Syst.
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In-domain single deletion score (IDSDS)

1. Train the model on images with deleted
patches
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1. Train the model on images with deleted 2. Rank correlation between output drops
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— Provably no information leakage
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Results

Ranking attribution methods

— Taking the absolute attributions (abs.) impairs performance

— |ntrinsically explainable models (A) achieve the best results
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Results

How design choices affect attribution quality

— Deeper models have lower attribution quality
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Results

How design choices affect attribution quality

— There Is an accuracy-attribution quality tradeoftf
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