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What are attribution maps
…and why is it hard to evaluate them?
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[1] Selvaraju et al. (2017). “Grad-CAM: Visual explanations from 
deep networks via gradient-based localization.” In: ICCV 

[2] Sundararajan et al. (2017). “Axiomatic attribution for deep 
networks.” In: ICML 
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No ground truth explanation!
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Related work
…and its limitations
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[4] Samek et al. (2017). “Evaluating the visualization of what a deep neural 
network has learned.” In: IEEE Trans. Neural Networks Learn. Syst.

[5] Hesse et al. (2023). “FunnyBirds: A synthetic vision dataset for a part-
based analysis of explainable AI methods.” In: ICCV 
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 Aligned train and test domains→
 Provably no information leakage→

 Allows for inter-model comparison→
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Results
Ranking attribution methods
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→ Intrinsically explainable models (▲) achieve the best results
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Results
How design choices affect attribution quality
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→ Deeper models have lower attribution quality
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