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RL stands for Real-world LLM & Reinforcement Learning,  DetectRL aims to enhance the development of detectors that perform 

effectively in real-world scenarios, thereby improving their overall effectiveness, similar to the principles of reinforcement learning.
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Background
• The critical task of detecting text generated by large language models.

• Detection capabilities of current detectors have reached impressive levels. 
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Motivation
• Previous popular benchmarks primarily focused on idealized test data. 

• The reliability of existing detectors in real-world applications remains 
underexplored.
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Research Questions
(1) How do SOTA LLM-generated text detectors perform in real-world 
application scenarios? 

(2) What real-world factors influence the performance of detectors and 
to what extent?

We investigate these questions by introducing DetectRL, a 

novel benchmark for real-world LLM-generated text detection.
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Our Benchmark: DetectRL

Pipeline of Benchmark Framework

• High-risk and abuse-prone writing domain

• Widely-used and powerful LLMs

• Various Attacks align with practical applications

• Text with varying interval lengths

• Balanced sample distributions across domains, LLMs, and attack 
types in all test scenarios.
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Our Benchmark: DetectRL

Data Sources

• arXiv Archive (academic writing)

• XSum Dataset (news writing)

• Writing Prompts (creative writing)

• Yelp Reviews (social media)

Generative Models

• GPT-3.5-Turbo

• PaLM-2-bison

• Claude-instant

• Llama-2-70b
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Our Benchmark: DetectRL

DetectRL Benchmark 
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Task 1: In-domain robustness
To evaluate the foundational performance of 
detectors in different domains, generators, and 
attack strategies.

Task 2: Generalization
To evaluate the detector’s ability to handle out-
of-distribution samples within each category.

Task 3: Varying text length
To evaluates how training-time and test-time 
text length affects the performance of detectors.

Task 4: Real-world human writing 
To evaluates the impact of human-written 
factors on the performance of detectors.

Benchmark Statistics and Task definition
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Evaluation Metrics

AUROC

• considers both True Positive Rate (TPR) and 
False Positive Rate (FPR).

F1 Score

• considers both Precision and Recall.
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Zero-shot Methods
• Log-Likelihood (Gehrmann et al., 2019)

• Rank (Gehrmann et al., 2019)

• Log-Rank (Gehrmann et al., 2019)

• LRR (Su et al., 2023) 

• NPR (Su et al., 2023) 

• Revise-Detcet. (Zhu et al., 2023) 

• DetectGPT (Mitchell et al., 2023) 

• DNA-GPT (Yang et al., 2024) 

• Binoculars (Hans et al., 2024) 

• Fast-DetectGPT (Bao et al., 2024) 

Supervised Classifiers

• RoBERTa-Base (Liu et al., 2019)

• RoBERTa-Large (Liu et al., 2019)

• XLM-RoBERTa-Base (Conneau et al., 2019)

• XLM-RoBERTa-Large (Conneau et al., 2019)

Detection Methods
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• Supervised detectors consistently outperform zero-shot detectors.
• For zero-shot detectors, Binoculars ranked highest.
• DetectGPT and similar advanced detectors are unreliable.

Discussion: Leaderboard
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• Incorporating a mix distribution of domains, LLMs, and attack types 
increases the testing pressure of zero-shot method.

Discussion: Significant Challenge
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• Text with more formal stylistic nature poses a greater challenge.

Discussion: In-domain Robustness
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• Difference in statistical patterns of LLMs pose significant challenges to 
detectors.

Discussion: In-domain Robustness
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• Perturbation attacks represent the most significant threat to current 
detectors. 

Discussion: In-domain Robustness
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• Less formal stylistic data to enhance generalization.

Discussion: Generalization of Detectors

• Texts generated by LLMs with similar statistical patterns generally perform 
well with each other. 

• Perturbation attacks poses the greatest challenge to generalization.
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• Shorter training samples for stronger zero-shot detectors.

Discussion: Impact of text length

• Longer test samples for better zero-shot detection, but not too long for 
supervised methods.
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• Paraphrase attacks and data mixing have minimal impact on zero-shot 
detectors, but paraphrase attacks can confuse supervised detectors.

Discussion: Impact of real-world human writing

• Perturbation attacks on human-written texts appeared to enhance the 
discernment capabilities of zero-shot detectors.
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Conclusion

• DetectRL, a novel benchmark designed to evaluate the usability of 
detectors in scenarios that closely resemble real-world applications.

• Reveal the primary reasons why existing detectors for LLM-generated 
texts struggle in practical applications.

• Discussion of the potential factors influencing detector performance.

• Provides a data curation framework, which supports the rapid creation of 
an evolving, comprehensive benchmark aligns with real-world scenarios.
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Thanks for listening!

Code & Data:

https://github.com/NLP2CT/DetectRL

https://github.com/NLP2CT/DetectRL
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