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Background

* GNNs rely heavily on high quality labelled data. However, it could be labor-intensive to
annotate sufficient labels.

* Applying a well-trained classifier to another graph can yield inferior performance.
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Node Classification ACC: 92% Node Classification ACC: 63%
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Related Work

Unsupervised Graph Domain Adaptation (UGDA) has become an important solution
for transferring knowledge from a labeled source graph to an unlabeled target graph.
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Figure 1: This timeline illustrates the diverse UGDA algorithms revisited in this paper. All of them
are incorporated into our PyGDA library. More details are shown in Section 2 and Appendix C
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Challenges

* Inadequate Evaluation of Domain Distribution Discrepancies.

The distribution shifts in node attributes, graph structures, and label proportions between graphs will significantly
influence the adaptation performance and result in various adaptation scenarios. However, the types and magnitudes
of distribution discrepancies among different domains have not been thoroughly evaluated and discussed.

* Lack of Standard, Fair, and Comprehensive Comparisons.

The utilization of distinct datasets, varying data processing methodologies, and divergent data partitioning strategies
results in incomparability across different findings. Further more, they are mainly evaluated against limited baselines
with constrained scenarios, which lack validation of the model’s capability in more diverse or complex applications.

* Limited Investigation on GNN Inherent Transferability.

It is still unclear how data shift impose challenges on GNN and how to unleash the transferabililty power for GNN.
Understanding the key components that affect adaptation in GNN will be crucial for enhancing GNN’s transferabililty,
which is still an open problem.
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Datasets

For node classification tasks, we have carefully selected five widely used public datasets and

compiled a comprehensive collection comprising 74 distinct source-target adaptation pairs.

(1) Wide range of distribution shift. (2) Different scales with variant spans. (3) Various downstream applications. J

Table 1: Datasets used in GDABench reflecting a wide range of distribution shifts.
no data shift exists. Circles (O, @ and @) represent the degree of the corresponding shift between
domains and Airport does not contain node features. The magnitude of shift is directly proportional
to the filling area of the circle. The statistic manners and more details are provided in Appendix B.

-> indicates

Dataset Size | Feature Shift | Structure Shift | Label Shift | # Domains | # Labels | # Homo
Airport S - D O 3 4 0.52
Blog S @, O O 2 6 0.40
ArnetMiner M D D O 3 ) 0.83
Twitch M [ & D 6 2 0.59
MAG L o [ o 6 20 0.58
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Compared Models

* Specialized UGDA Methods.

This group includes specifically designed algorithms for graph domain adaptation task.

 SimGDA: Vanilla DA with GNN Variants.

To understand the inherent transferability of GNN, we delve into its aggregation process and decouple it from two

perspectives: how to aggregate and what to aggregate. Then, we get 14 models by combining variants with two vanilla
DA methods.

* SimGDA+: SimGDA with Unsupervised Techniques.

To further unlock the power of GNN for graph domain adaptation, we enhance SimGDA with unsupervised graph
learning techniques on unlabeled target graph, which allows the model to learn meaningful representations without
relying on domain-specific labels. We implement three unsupervised techniques in an end-to-end manner.
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Compared Models

* Specialized UGDA Methods.

Specifically designed algorithms for graph domain adaptation task.

 SimGDA: Vanilla DA with GNN Variants.

14 models by decoupling aggregation process from two perspectives.

* SimGDA+: SimGDA with Unsupervised Techniques.

Enhance SimGDA with three unsupervised graph learning techniques on unlabeled target graph.
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Figure 2: The combination process of SIimGDA / SimGDA+.
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Overall Comparisons

* Observation 1: When facing significant shifts, it is important to design solutions tailored
to mitigate structural discrepancies.

Table 2&3: We compared MicroF1 of each model on Airport, Blog, and ArnetMiner. We evaluated Macro-F1 on MAG and AUROC scores on Twitch. Highlighted

are the top first, second, and third results. Results for other tasks can be found in Appendix D.

Airport Blog ArnetMiner Twitch MAG

Models E—U U-E | Bl»B2 | B2»Bl | C—A DA | DE-ES | EN5RU | DE»PT | FR—JP | JP»FR | JP—RU
DANE 31.18 +3.26 33.75 +0.31 32.17 +3.20 32.77 4+0.66 62.87 +1.98 59.19 +1.66 56.71 +0.57 53.47 +0.84 55.71 +1.70 16.16 +0.24 16.71 +1.45 12.61 +0.19
ACDNE 48.52 +1.17 45.03 +0.43 54.30 +1.42 56.93 +0.56 72.34 +0.39 65.37 +3.50 51.13 +0.34 50.79 +0.12 52.47 +1.83 20.12 +0.37 18.92 +1.08 13.91 +0.35
UDAGCN 41.62 +0.58 3317 +0.12 2758 +0.63 2546 +5.96 70.24 +1.01 6249 +1.16 5648 +0.18 5372 +0.42 5422 +2.10 12.22 +0.31 11.62 +0.35 11.17 +0.29
DA Incorporated ASN 46.58 10.21 | 40.85 10.54 | 5391 1052 | 56.25 +0.52 | 71.70 +o.38 | 66.15 £1.02 || 53.57 +0.72 | 50.29 +0.15 | 55.03 +0.75 | 11.91 £1.45 | 12.04 10.70 | 10.79 +0.24
Node Embedding AdaGCN | 46.55 +0.42 | 49.62 10.01 | 43.06 +3.03 | 36.58 +8.94 | 67.66 +0.36 | 60.47 +0.99 || 52.32 +0.76 | 51.99 +1.31 | 51.09 +0.61 | 16.21 +0.47 | 14.12 1046 | 13.05 +0.08
DMGNN 4585 +1.03 2782 +2.95 4627 +2.40 44.96 +1.57 72.91 +0.44 70.68 4+0.27 5411 +0.09 5042 +0.03 5344 +0.04 1201 +0.78 993 +0.40 1028 +1.04
CWGCN 44.68 +0.42 40.69 +0.47 31.96 +3.47 33.46 +4.96 71.65 +0.21 68.21 +0.09 57.62 4+0.64 52.90 40.37 58.21 40.57 11.01 4+0.48 12.37 4+0.54 12.38 +0.25
SAGDA 30.62 1557 | 3592 £1.01 | 26.51 £11.12 | 2691 1796 | 6540 1438 | 64.60 10.80 || 51.58 +0.09 | 51.03 £0.23 | 51.96 +0.70 | 16.28 1051 | 3.64 15.07 | 11.40 10,59

DGDA 4345 1216 | 43.78 12.090 | 22.10 +1.45 | 21.06 +2.07 | 52.20 +462 | 56.31 +2.01 || 5443 1360 | 51.68 +1.08 | 54.29 14908 OOM OOM OOM
StruRW 4594 +0.69 3609 +0.01 40.02 +0.37 42.10 +1.18 7059 +0.15 64.15 +0.31 5960 +0.19 52.04 +0.36 58.74 +2.09 22.10 +0.40 12.89 +0.85 12.96 +0.43
SDti:l::::::le Shift KBL 4454 1073 | 32.08 +0.20 35.14 1397 3490 4949 | 70.49 10.26 | 63.34 1053 58.33 +0.44 | 5591 +0.16 | 51.66 +0.08 17.60 +0.39 6.12 1+0.14 14.49 1¢.30
Alignment JHGDA 36.89 10.05 | 40.85 +168 | 17.79 42.12 | 23.16 4659 | 65.53 £0.94 | 60.80 +0.35 || 62.25 +0.49 | 53.75 +0.15 | 61.88 £0.48 | 20.51 +0.20 | 20.46 +0.57 | 11.85 +0.37
PairAlign | 42.38 +0.77 | 36.84 +1.48 | 32.17 +10.88 | 41.16 +3.02 | 58.06 +2.62 | 56.68 +0.89 || 50.78 40,22 | 51.19 1020 | 52.03 4097 | 23.29 1049 | 23.72 1930 | 12.34 1031
GRADE 4936 1035 | 48.45 1156 | 38.64 1373 | 44.01 1451 | 69.16 1030 | 63.47 £1.10 | 58.57 40.42 | 53.55 +0.08 |162.12 1017 | 11.93 1048 | 10.95 4055 | 9.35 +0.25
&‘;T;i"e’*::;::;ve SpecReg 37.59 1055 | 28.91 4577 28.27 +4.09 30.30 £1.35 | 68.90 £4.78 | 66.30 +4.08 51.04 +0.33 | 50.17 +0.06 |155.91 +0.50 1945 4054 | 20.17 +1.35 | 15.82 +0.50
¢ ¢ A2GNN 50.64 +1.47 53.47 +0.24 22.58 +0.01 33.04 +4.12 76.15 +0.06 74.12 4+0.18 59.41 +0.34 52.01 +0.32 61.82 4+0.77 26.20 +0.74 25.78 +0.25 16.94 4+0.13
m SimGDA 5529 +0.39 | 54.39 +0.90 | 53.35 +0.69 | 43.04 +0.86 | 70.80 +0.06 | 67.04 10.15 | 61.30 19.32 | 53.11 10.19 | 58.27 +0.16 | 18.59 +0.07 | 15.16 +0.11 | 13.27 +0.04
SimGDA+ | 58.11 49.40 | 57.52 +0.38 57.04 045 | 44.17 4002 | 73.18 10.38 | 71.81 4244 61.53 £0.08 | 53.82 10.08 | 61.60 +0.11 | 21.94 40.18 | 21.36 +0.09 | 15.64 1046
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Overall Comparisons

* Observation 2: Domain-adaptive message passing methods demonstrate superior and
robust performance across a wide range of datasets and tasks.

Table 2&3: We compared MicroF1 of each model on Airport, Blog, and ArnetMiner. We evaluated Macro-F1 on MAG and AUROC scores on Twitch. Highlighted

are the top first, second, and third results. Results for other tasks can be found in Appendix D.

Airport Blog ArnetMiner Twitch MAG

Models E—U U-E | Bl»B2 | B2»Bl | C—A DA | DE-ES | EN5RU | DE»PT | FR—JP | JP»FR | JP—RU
DANE 31.18 +3.26 33.75 +0.31 32.17 +3.20 32.77 +0.66 62.87 +1.98 59.19 +1.66 56.71 +0.57 53.47 +0.84 55.71 +1.70 16.16 +0.24 16.71 +1.45 12.61 +0.19
ACDNE 48.52 +1.17 45.03 +0.43 54.30 +1.42 56.93 +0.56 72.34 +0.39 65.37 +3.50 51.13 +0.34 50.79 +0.12 52.47 +1.83 20.12 +0.37 18.92 +1.08 13.91 +0.35
UDAGCN 41.62 +0.58 3317 +0.12 2758 +0.63 2546 +5.96 70.24 +1.01 6249 +1.16 56.48 +0.18 5372 +0.42 5422 +2.10 12.22 +0.31 11.62 +0.35 11.17 +0.29
DA Incorporated ASN 46.58 +0.21 | 40.85 10.54 | 5391 1052 | 56.25 1952 | 71.70 +0.38 | 66.15 +1.02 53.57 +0.72 | 50.29 10.15 | 55.03 1075 | 1191 +1.45 | 12.04 10.70 | 10.79 +0.24
Node Embedding AdaGCN | 46.55 +0.42 | 49.62 10.01 | 43.06 +3.03 | 36.58 +8.94 | 67.66 +0.36 | 60.47 +0.99 || 52.32 +0.76 | 51.99 +1.31 | 51.09 +0.61 | 16.21 +0.47 | 14.12 1046 | 13.05 +0.08
DMGNN 4585 +1.03 2782 +2.95 4627 +2.40 44.96 +1.57 72.91 +0.44 70.68 4+0.27 5411 +0.09 5042 +0.03 5344 +0.04 1201 +0.78 993 +0.40 1028 +1.04
CWGCN 44.68 +0.42 40.69 +0.47 31.96 +3.47 33.46 +4.96 71.65 +0.21 68.21 +0.09 57.62 4+0.64 52.90 40.37 58.21 40.57 11.01 4+0.48 12.37 4+0.54 12.38 +0.25
SAGDA 30.62 1557 | 3592 1101 | 26.51 11112 | 2691 4796 | 65.40 £438 | 64.60 10.80 || 51.58 £0.09 | 51.03 1023 | 51.96 £0.70 | 1628 1051 | 3.64 1507 | 11.40 1059

DGDA 4345 1216 | 43.78 +2.90 | 22.10 +1.45 | 21.06 +2.07 | 52.20 4462 | 56.31 +2.01 5443 1360 | 51.68 £1.08 | 54.29 +4.98 OOM OOM OOM
StruRW 4594 1069 | 36.09 £0.01 | 40.02 +0.37 | 42.10 +1.18 | 70.59 +0.15 | 64.15 +0.31 59.60 +0.19 | 52.04 10.36 | 58.74 +2.00 | 22.10 4040 | 12.89 10985 | 12.96 +0.43
SDti:l::::::le Shift KBL 4454 1073 | 32.08 +0.20 35.14 1397 3490 4949 | 70.49 10.26 | 63.34 1053 58.33 +0.44 | 5591 +0.16 | 51.66 +0.08 17.60 +0.39 6.12 1+0.14 14.49 1¢.30
Alignment JHGDA 36.89 1005 | 40.85 1168 1779 1212 | 23.16 +6.59 | 65.53 +0.94 | 60.80 +¢.35 62.25 +0.49 | 53.75 £0.15 | 61.88 £0.48 | 20.51 +0.20 | 20.46 1057 | 11.85 +0.37
PairAlign 4238 10.77 | 36.84 11.48 | 32.17 £10.88 | 41.16 £3.02 | 58.06 1262 | 56.68 Lo.89 50.78 +0.20 | 51.19 40.20 | 52.03 4007 | 23.29 10949 | 23.72 1030 | 12.34 +¢.31
GRADE 49.36 10.35 | 4845 +1.56 | 38.64 1373 | 44.01 +451 | 69.16 +0.39 | 63.47 +1.10 58.57 +0.42 | 53.55 +0.28 |162.12 10.17 | 11.93 +0.48 | 10.95 4055 9.35 10.05
&‘;T;i"e’*::;:&ve SpecReg 37.59 1055 | 28.91 4577 28.27 +4.09 30.30 £1.35 | 68.90 £4.78 | 66.30 +4.08 51.04 +0.33 | 50.17 +0.06 |155.91 +0.50 1945 4054 | 20.17 +1.35 | 15.82 +0.50
¢ ¢ A2GNN 50.64 +1.47 53.47 +0.24 22.58 +0.01 33.04 +4.12 76.15 +0.06 74.12 4+0.18 59.41 +0.34 52.01 +0.32 61.82 4+0.77 26.20 +0.74 25.78 +0.25 16.94 4+0.13
m SimGDA 5529 +0.39 | 54.39 +0.90 | 53.35 +0.69 | 43.04 +0.86 | 70.80 +0.06 | 67.04 10.15 | 61.30 19.32 | 53.11 10.19 | 58.27 +0.16 | 18.59 +0.07 | 15.16 +0.11 | 13.27 +0.04
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Understanding the inherent power of GNN

* Observation 3: SimGDA achieves competitive performance compared with UGDA
methods.

Table 2&3: We compared MicroF1 of each model on Airport, Blog, and ArnetMiner. We evaluated Macro-F1 on MAG and AUROC scores on Twitch. Highlighted

are the top first, second, and third results. Results for other tasks can be found in Appendix D.

Airport Blog AmetMiner Twitch MAG

Models E—U U-E | Bl»B2 | B2»Bl | C—A DA | DE-ES | EN5RU | DE»PT | FR—JP | JP»FR | JP—RU
DANE 31.18 +3.26 33.75 +0.31 32.17 +3.20 32.77 4+0.66 62.87 +1.98 59.19 +1.66 56.71 +0.57 53.47 +0.84 55.71 +1.70 16.16 +0.24 16.71 +1.45 12.61 +0.19
ACDNE 48.52 +1.17 45.03 +0.43 54.30 +1.42 56.93 +0.56 72.34 +0.39 65.37 +3.50 51.13 +0.34 50.79 +0.12 52.47 +1.83 20.12 +0.37 18.92 +1.08 13.91 +0.35
UDAGCN 41.62 +0.58 3317 +0.12 2758 +0.63 2546 +5.96 70.24 +1.01 6249 +1.16 5648 +0.18 5372 +0.42 5422 +2.10 12.22 +0.31 11.62 +0.35 11.17 +0.29
DA Incorporated ASN 46.58 10.21 | 40.85 10.54 | 5391 1052 | 56.25 +0.52 | 71.70 £o.38 | 66.15 £1.02 | 53.57 +0.72 | 50.29 +0.15 | 55.03 +0.75 | 11.91 £1.45 | 12.04 10.70 | 10.79 +0.24
Node Embedding AdaGCN | 46.55 +0.42 | 49.62 +0.01 | 43.06 +3.03 | 36.58 +8.94 | 67.66 +0.36 | 60.47 +0.99 | 52.32 +0.76 | 51.99 +1.31 | 51.09 +0.61 | 16.21 +0.47 | 14.12 4046 | 13.05 +0.08
DMGNN 45.85 +1.03 27.82 +2.95 46.27 +2.40 44.96 +1.57 72.91 +0.44 70.68 4+0.27 54.11 4+0.09 50.42 4+0.03 53.44 4+0.04 12.01 4+0.78 9.93 40.40 10.28 +1.04
CWGCN 44.68 +0.42 40.69 +0.47 31.96 +3.47 33.46 +4.96 71.65 +0.21 68.21 +0.09 57.62 4+0.64 52.90 40.37 58.21 40.57 11.01 4+0.48 12.37 4+0.54 12.38 +0.25
SAGDA 30.62 1557 | 3592 £1.01 | 26.51 £11.12 | 2691 1796 | 6540 1438 | 64.60 1080 | 51.58 +0.09 | 51.03 £0.23 | 51.96 +0.70 | 16.28 1051 | 3.64 1507 | 11.40 10,59

DGDA 4345 1916 | 4378 +2.90 | 22.10 1145 | 21.06 +2.07 | 52.20 +4.62 | 56.31 1201 | 54.43 1360 | 51.68 £1.08 | 54.29 1428 OOM OOM 00).%
StruRW 4594 4+0.69 3609 +0.01 40.02 +40.37 42.10 +1.18 7059 +0.15 64.15 40.31 5960 +0.19 52.04 +0.36 58.74 +2.09 22.10 +0.40 12.89 +0.85 12.96 +0.43
SDti:l::::::le Shift KBL 4454 1073 | 32.08 +0.20 35.14 1397 3490 4949 | 70.49 10.26 | 63.34 1053 58.33 +0.44 | 5591 10.16 | 51.66 +0.08 17.60 +0.39 6.12 10.14 14.49 10.30
Alignment JHGDA 36.89 1025 | 40.85 1168 | 17.79 1212 | 23.16 1650 | 65.53 £0.04 | 60.80 10.35 | 62.25 £0.49 | 53.75 +0.15 | 61.88 £0.48 | 20.51 +0.20 | 2046 +0.57 | 11.85 +0.37
PairAlign | 42.38 +0.77 | 36.84 +1.48 | 32.17 +10.88 | 41.16 +3.02 | 58.06 +2.62 | 56.68 +0.89 | 50.78 10.22 | 51.19 10.20 | 52.03 10.97 | 23.29 10.49 | 23.72 1030 | 12.34 10.31
GRADE 49.36 +0.35 | 48.45 1156 | 38.64 1373 | 44.01 1451 | 69.16 +0.39 | 63.47 +1.10 | 58.57 +0.42 | 53.55 £0.28 | 62.12 10.17 | 1193 1048 | 1095 1055 | 9.35 £0.25
&ZT:;"EA::SI::LVG SpecReg 37.59 41055 | 28.91 45.77 28.27 +4.09 30.30 £1.35 | 68.90 £4.78 | 66.30 +4.08 51.04 +0.33 | 50.17 40.06 | 5591 +0.59 19.45 +0.54 | 20.17 +1.35 | 15.82 +0.50
¢ £ A2GNN 50.64 +1.47 53.47 +0.24 22.58 +0.01 33.04 +4.12 76.15 +0.06 74.12 4+0.18 59.41 +0.34 52.01 +0.32 61.82 4+0.77 26.20 +0.74 25.78 +0.25 16.94 +0.13
m SimGDA 55.29 +0.39 54.39 +0.90 5335 +0.69 43.04 +0.86 70.80 +0.06 6704 +0.15 61.30 +0.32 5311 +0.19 5827 4+0.16 1859 4+0.07 1516 +0.11 13.27 +0.04
SimGDA+ | 58.11 1940 | 57.52 10.38 | 57.04 1045 | 44.17 10.02 | 73.18 1038 | 71.81 1944 | 61.53 10.08 | 53.82 £0.08 | 61.60 +0.11 | 21.94 +0.18 | 21.36 +0.09 | 15.64 10 46
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Understanding the inherent power of GNN

* Observation 4: The benefit of multi-hop neighbors depends on the degree of label shift
and graph heterophily.

L The impact of structural information varies depending on the dataset with diverse degree of label shift
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Figure 3: SimGDA: the compared performance of vanilla DA with 6 GNN variants
Figure 5: The compared performance of vanilla DA with 6 GNN variants
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Understanding the inherent power of GNN

* Observation 4: The benefit of multi-hop neighbors depends on the degree of label shift
and graph heterophily.

Heterophilous graphs exhibit a larger degree of conditional shift, and aggregation process may help to mitigate this
situation by providing a more comprehensive view of the node’s context
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Understanding the inherent power of GNN

* Observation 5: A source-unbiased discriminative aggregation mechanism is needed.

Superiority of the GCN aggregator over mean and max emphasizes the necessity of a discriminative aggregation
operator with highly expressive power.
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Understanding the inherent power of GNN

* Observation 5: A source-unbiased discriminative aggregation mechanism is needed.

Source-bised discriminative aggregation mechanisms deteriorate the model’s transfer capability.
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Unlocking the inherent power of GNN

* Observation 6: GNNSs can serve as a powerful graph domain adaptor with appropriate
aggregators, careful selection of neighbor hops, and unsupervised learning techniques.

Table 2&3: We compared MicroF1 of each model on Airport, Blog, and ArnetMiner. We evaluated Macro-F1 on MAG and AUROC scores on Twitch. Highlighted

are the top first, second, and third results. Results for other tasks can be found in Appendix D.

Airport Blog AmetMiner Twitch MAG

Models E—U U-E | Bl»B2 | B2»Bl | C—A DA | DE-ES | EN5RU | DE»PT | FR—JP | JP»FR | JP—RU
DANE 31.18 +3.26 33.75 +0.31 32.17 +3.20 32.77 +0.66 62.87 +1.98 59.19 +1.66 56.71 +0.57 53.47 +0.84 55.71 +1.70 16.16 +0.24 16.71 +1.45 12.61 +0.19
ACDNE 48.52 +1.17 45.03 +0.43 54.30 +1.42 56.93 +0.56 72.34 +0.39 65.37 +3.50 51.13 +0.34 50.79 +0.12 52.47 +1.83 20.12 +0.37 18.92 +1.08 13.91 +0.35
UDAGCN 41.62 +0.58 3317 +0.12 2758 +0.63 2546 +5.96 70.24 +1.01 6249 +1.16 56.48 +0.18 5372 +0.42 5422 +2.10 12.22 +0.31 11.62 +0.35 11.17 +0.29
R ASN 46.58 +0.21 | 40.85 +0.54 | 53.91 10520 | 56.25 1952 | 71.70 +0.38 | 66.15 +1.02 53.57 +0.72 | 50.29 10.15 | 55.03 £0.75 | 11.91 1145 | 12.04 £0.70 | 10.79 +0.24
Node Embedding AdaGCN | 46.55 +0.42 | 49.62 10.01 | 43.06 +3.03 | 36.58 18.94 | 67.66 +0.36 | 60.47 +0.99 | 52.32 +0.76 | 51.99 £1.31 | 51.09 +o.61 | 16.21 1047 | 14.12 10.46 | 13.05 £0.08
DMGNN 45.85 +1.03 27.82 +2.95 46.27 +2.40 44.96 +1.57 72.91 +0.44 70.68 4+0.27 54.11 4+0.09 50.42 4+0.03 53.44 4+0.04 12.01 4+0.78 9.93 40.40 10.28 +1.04
CWGCN 44.68 +0.42 40.69 +0.47 31.96 +3.47 33.46 +4.96 71.65 +0.21 68.21 +0.09 57.62 4+0.64 52.90 40.37 58.21 40.57 11.01 4+0.48 12.37 4+0.54 12.38 +0.25
SAGDA 30.62 +557 | 3592 £1.01 | 26.51 £11.12 | 2691 1706 | 65.40 4438 | 64.60 +0.80 | 51.58 +0.00 | 51.03 £0.23 | 51.96 +0.70 | 16.28 1051 | 3.64 1507 | 11.40 +o.59

DGDA 4345 1216 | 43.78 +2.90 | 22.10 +1.45 | 21.06 +2.07 | 52.20 +4.62 | 56.31 +2.01 5443 1360 | 51.68 £1.08 | 54.29 +4.98 OOM OOM OOM
StruRW 4594 1069 | 36.09 £0.01 | 40.02 +0.37 | 42.10 +1.18 | 70.59 +0.15 | 64.15 +0.31 59.60 +0.19 | 52.04 10.36 | 58.74 +2.09 | 22.10 4040 | 12.89 1085 | 12.96 +0.43
SDti::::::::le Shift KBL 4454 1073 | 32.08 +0.20 35.14 1397 3490 4949 | 70.49 10.26 | 63.34 1053 58.33 +0.44 | 5591 10.16 | 51.66 +0.08 17.60 +0.39 6.12 10.14 14.49 10.30
Alignment JHGDA 36.89 1005 | 40.85 1168 1779 1212 | 23.16 +6.59 | 65.53 +0.94 | 60.80 +¢.35 62.25 10.49 | 53.75 10.15 | 61.88 £0.48 | 20.51 10.20 | 20.46 +o.57 | 11.85 10.37
PairAlign 4238 10.77 | 36.84 11.48 | 32.17 +10.88 | 41.16 +3.02 | 58.06 1262 | 56.68 10.89 50.78 £0.22 | 51.19 40.20 | 52.03 +0.97 | 23.29 1049 | 23.72 1030 | 12.34 +9.31
GRADE 49.36 +0.35 | 48.45 +156 | 38.64 £3.73 | 44.01 +4.51 | 69.16 +0.39 | 63.47 +1.10 58.57 +0.42 | 53.55 +0.28 | 6212 10.17 | 11.93 +0.48 | 10.95 1055 9.35 19.05
&ZT:;"EA::SI::LVG SpecReg 3759 4955 | 2891 4577 28.27 +4.09 30.30 £1.35 | 68.90 £4.78 | 66.30 +4.08 51.04 +0.33 | 50.17 40.06 | 5591 +0.59 1945 1054 | 20.17 +1.35 | 15.82 +0.50
¢ ¢ A2GNN 50.64 £1.47 | 53.47 £0.24 | 22.58 £0.01 33.04 £4.12 | 76.15 10.06 | 74.12 10.15 59.41 +0.34 | 52.01 40.32 | 61.82 +0.77 | 26.20 +0.74 | 25.78 +0.25 | 16.94 1013
. SimGDA 55.29 +0.39 | 54.39 10.90 | 53.35 +0.69 | 43.04 +0.86 | 70.80 +0.06 | 67.04 +0.15 | 61.30 +0.32 | 53.11 +0.19 | 58.27 +0.16 | 18.59 +0.07 | 15.16 +0.11 | 13.27 +0.04
m SimGDA+ | 58.11 1940 | 57.52 1038 | 57.04 1045 | 44.17 10.02 | 73.18 £0.38 | 71.81 4244 61.53 £0.08 | 53.82 10.08 | 61.60 +0.11 | 21.94 40.18 | 21.36 +0.09 | 15.64 10 46
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Conclusions

* The performance of current UGDA models varies greatly across different datasets
and adaptation scenarios;

* |tis crucial to develop tailored strategies to address graph structural shifts, especially

when the distribution discrepancies are significant;

* The GNN’s transferability in UGDA heavily relies on two factors: aggregation scope
and aggregation architecture, which are influenced by the severity of label shift and
the level of graph heterophily, etc;

* The inherent adaptability of GNNs is largely underestimated by existing methods,
which motivates the investigate of a simple yet effective model that relies heavily on

GNN'’s property.
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PYGDA

Quickly Build with Only 4 Lines

000 @ run.py

from pygda.models import A2GNN  Consistent APl and detailed documentation.

# choose a graph domain adaptation model * Covering all GDA baseline models.
model = A2GNN(num_classes=num_classes, device=args.device)

e Scalable architecture for batch processing of

# train the model
model.fit(source_data, target_data)

large graph data.

* Fully compatible with PyG data structures.
# evaluate the performance

logits, labels = model.predict(target_data)

r



PYGDA

Quickly Build with Only 4 Lines

000 @ run.py

from pygda.models import A2GNN

# choose a graph domain adaptation model
model = A2GNN(num_classes=num_classes, device=args.device)

# train the model
model.fit(source_data, target_data)

# evaluate the performance
logits, labels = model.predict(target_data)




Border Impacts and Limitations

Our benchmark fosters innovation and advances research in graph domain adaptation by
providing a standardized evaluation platform, leading to the development of more effective
algorithms. This standardization helps researchers compare methods more fairly, driving progress

and collaboration within the field.

However, benchmark datasets may introduce limitations that could impact the generalization of
findings to real-world scenarios. This risk includes the potential for unrealistic performance
expectations if the benchmark does not adequately represent the diversity and complexity of real-
world data. We plan to enhance GDABench by including more settings such as source-free and
open-set scenarios. This expansion will help to cover a wider range of domain adaptation
challenges, thereby fostering the development of algorithms that are not only motre robust but also
versatile enough to navigate the complexities of diverse and dynamic real-world scenarios. This
trajectory in research will be pivotal in advancing the capabilities of domain adaptation techniques,

ensuring their applicability and efficacy across various domains and evolving data landscapes.
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