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Graph Neural Networks
➢ Graph Neural Networks (GNNs) demonstrate strong potential in node classification tasks through 

the message-passing mechanism.

➢ The message-passing mechanism aggregates information from neighboring nodes, resulting in 

similar (homophily) representations for adjacent nodes.
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Graph Neural Networks
➢ Using semi-supervised learning to develop homophily node representations, GNNs can effectively 

generalize patterns from labeled training nodes to neighboring unlabeled nodes. 

➢ Thus, GNNs can perform well on node-level tasks with relatively few labels.

Representation Learning
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Graph Neural Networks
➢ However, if the training labels are incorrect, it can cause the unlabeled nodes with similar 

representations in the neighborhood to be incorrectly learned together. 

➢ Therefore, node classification tasks using GNNs rely on high-quality node labels.

Representation Learning

min ℒ 𝑓 𝐻 , ෨𝑌𝑡𝑟𝑎𝑖𝑛
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Graph Label Noise
➢ Graphs are inherently abstract high-dimensional data that are difficult for humans to understand, 

and labeling methods cannot be universally applied to different graph data.

➢ According to Li et al.[1], at least 6.91% of labels in the PubMed dataset are incorrect.

[1] Li, Yuwen, Miao Xiong, and Bryan Hooi. "Graphcleaner: Detecting mislabelled samples in popular graph 
learning benchmarks." International Conference on Machine Learning. PMLR, 2023.
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Challenges when dealing with graph label noise
➢ To address this challenge, an intuitive solution is to draw on the success of previous Learning with 

Label Noise (LLN)[2] strategies and apply them to GNNs.

➢ However, these approaches are not always applicable to graph learning tasks due to:

1. Non-i.i.d nature of graph data.

2. Sparse labeling of graph data

3. Message-passing mechanism of GNNs.

[2] Song H, Kim M, Park D, et al. Learning from noisy labels with deep neural networks: A survey[J]. IEEE 
transactions on neural networks and learning systems, 2022, 34(11): 8135-8153.
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GNN with Label Noise
➢ To achieve robust graph learning, researchers have proposed a series of GNN with Label Noise 

(GLN) methods.

➢ However, these works use different experimental settings in their benchmarks (Dataset selection，

Data splitting strategy，Noise type，Noise rate, etc.)
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NoisyGL: A Comprehensive Benchmark for Graph Neural 

Networks under Label Noise 
➢ We introduce NoisyGL: A comprehensive benchmark for graph neural networks under label noise. 

➢ NoisyGL enables fair comparisons and detailed analyses of GLN methods on noisy labeled graph 

data across various datasets, with unified experimental settings and interface.

➢ Our benchmark has uncovered several important insights, and we believe these findings will be 

highly beneficial for future studies.
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NoisyGL: A Comprehensive Benchmark for Graph Neural 

Networks under Label Noise 
We mainly consider two types of label noise that were most commonly used:

➢ Pair Noise: Labels only flip to their corresponding pair class.

➢ Uniform Noise: Labels flip to any class with equal probability.



NoisyGL-Research Questions

10

Research Questions:
In this study, we aim to answer the following research questions:

➢ RQ1: Can LLN methods be applied directly to graph learning tasks?

➢ RQ2: How much progress has been made by existing GLN methods?

➢ RQ3: Are existing GLN methods computationally efficient?

➢ RQ4: Are existing GLN methods sensitive to noise rate?

➢ RQ5: Are existing GLN methods robust to different types of label noise?

➢ RQ6: Good or bad? Revisiting the role of graph structure in label noise.
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Finding 1: Most LLN methods do not significantly improve GNN 

robustness to label noise.
➢ Most of the selected LLN methods do not substantially improve the performance of the GNN 

backbone under label noise.
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Finding 2: Existing GLN methods can alleviate the negative 

impact of label noise in specific applicable scenarios.
➢ In most circumstances，GLN methods are more robust to label noise than the baseline method. 

However, none of them consistently perform well across all datasets, especially on highly 

heterophilous graph.
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Finding 3: Some GLN methods are computationally inefficient. 
➢ Some GLN methods take more time to converge.

➢ For instance, RNCGLN is the slowest, taking 66.8 times longer than GCN on the Cora dataset and 

an astounding 2945.8 times longer on the DBLP dataset.
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Finding 4：Pair noise is more harmful to graph learning.
➢ In our experiments, we consistently observed that pair noise poses the most significant threat to 

the generalization ability of models.

➢ Our empirical study shows that pair noise has the greatest impact, leading the model to overfit the 

mislabeled classes.
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Finding 4： Pair noise is more harmful to graph learning. 
➢ Intuitively: Pair noise flips labels to the pair class, which can be more misleading than uniform noise.

➢ Formally: A simplified GCN with ridge regression has the following closed-form solution[3]：

෠𝑌 = 𝐴𝑘𝑋 𝐴𝑘𝑋
𝑇
𝐴𝑘𝑋 + λ𝐼

−1

𝐴𝑘𝑋
𝑇
𝑌𝑡 = 𝑃𝑌𝑡

➢ Introducing label noise is equivalent to multiplying the prediction by a transition matrix: ෠𝑌𝑝𝑡𝑏 = 𝑃𝑌𝑡Q

➢ The difference in prediction results trained under clean and noisy labels:

𝛥𝑌 = ‖ ෠𝑌 − ෠𝑌𝑝𝑡𝑏‖2 = ‖𝑃𝑌𝑡 − 𝑃𝑌𝑡𝑄‖2 = ‖𝑃𝑌𝑡 (𝐼 − 𝑄)‖2

➢ The upper bound of prediction error can be expressed as:

𝛥𝑌 ≤ ‖𝑃‖2 ⋅ ‖𝑌𝑡‖2 ⋅ ‖𝐼 − 𝑄 ‖2

[3] Zhang, Mengmei, et al. "Adversarial label-flipping attack and defense for graph neural networks." 2020 
IEEE International Conference on Data Mining (ICDM). IEEE, 2020.
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Finding 4： Pair noise is more harmful to graph learning.
➢ The upper bound of prediction error can be expressed as：

𝛥𝑌 ≤ 𝑃 2 ⋅ 𝑌𝑡 2 ⋅ 𝐼 − 𝑄 2,

➢ where ‖𝑃‖2 ⋅ ‖𝑌𝑡‖2 are fixed values and are independent of the noise model.

➢ Let the noise rate be 𝜖, for Uniform noise and Pair noise， ‖𝐼 − 𝑄 ‖2 has different values：

𝐼 − 𝑄𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑐ϵ2 + 𝑐 𝑐 − 1 −
ϵ

𝑐 − 1

2

= ϵ 𝑐 +
𝑐

𝑐 − 1

𝐼 − 𝑄𝑝𝑎𝑖𝑟 = 𝑐ϵ2 + 𝑐ϵ2 = 2𝑐ϵ2 = ϵ 2𝑐

➢ In multi-class node classification tasks, where 𝑐 ≥ 2, we have 𝐼 − 𝑄𝑢𝑛𝑖𝑓𝑜𝑟𝑚 ≤ 𝐼 − 𝑄𝑝𝑎𝑖𝑟 。

➢ This proves that the upper bound of the prediction error caused by pair noise is greater than 

uniform noise,  indicating that pair noise is more disruptive. 
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Finding 5：Label noise can Propagate through graph topology.
➢ AUCS, AUU, and AUIS represent the probability of correctly classifying an unlabeled node (test 

node) under three conditions: the presence of correctly labeled neighboring nodes, no labeled 

neighboring nodes, and the presence of incorrectly labeled neighboring nodes, respectively.
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Finding 5：Label noise can Propagate through graph topology.
➢ Experimental results show that the classification accuracy of unlabeled data significantly decreases

when there are incorrectly labeled nodes in the neighborhood.
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Finding 6: Sparse graphs are more vulnerable to the propagation 

effect of label noise.
➢ The propagation of label noise is more apparent in sparse graphs (e.g. Cora) and less 

noticeable in dense graphs (e.g. A-Photos). This probably because nodes in dense graphs can 

receive more supervision from the neighboring nodes.
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Finding 6: Sparse graphs are more vulnerable to the propagation 

effect of label noise.
➢ Graph Structure Augmentation methods (NRGNN, RTGNN, RNCGLN) can mitigate the 

propagation of label noise in sparse graphs. 

➢ The up-sampling process in these methods introduces more edges, providing additional 

supervision for unlabeled nodes.
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Designing widely applicable GLN approaches
➢ There is no existing GLN method applicable for all scenarios, especially for highly heterophilous

graphs. Therefore, it is necessary to develop GLN methods that are broadly applicable to various 

types of data.

Designing GLN approaches for various graph learning tasks
➢ Previous studies on GLN have predominantly focused on node classification tasks. Hence, designing 

GLN methods for more graph learning tasks (e.g. link prediction, graph classification) is crucial .

Considering other types of label noise in graph learning
➢ Current GLN methods assume that labels are affected by i.i.d. label noise. However, the non-i.i.d. 

Graph data, may also have non-i.i.d. label noise. Therefore, it is necessary to redesign noise models 

and GLN schemes under new assumptions.
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Paper Code

Thank you for listening!


