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Background

High-temperature Superconductors(HSC)
 Zero resistance, Meissner effect

 Energy transmission, advanced electromagnetics, and 
quantum computing, etc.

Challenges for Designing HSC
 Theoretical calculation: HSC mechanism unclear/BCS 
theory is limited.

 Hunt for HCS: "Holy Grail" of physics, a century-old 
challenge.

We need new  method…
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Background

Data Driven Method
 Deep Learning: Bypass complex physical theories

 GNN extensively applied to model materials

• Properties prediction

• 3D structures generation

 Inverse Materials Design
 Given target properties to generate 3D structures

• CDVAE/DiffCSP/SyMat
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GNN: Represent atom/bond 
as node/edge

We need data to train models…
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Related Dataset

 SuperCon
 33,000, only chemical formulas

 Jarvis-DFT
 1058, DFT calculated with BSC theory

 S2S
 1,065, label materials with Superconductivity (Yes or No)

 3DSC
 9,150, elemental matching and manual doping (some not experimental observation)
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SuperCon3D Dataset

 Collection Methods
 Formula matching between SuperCon and ICSD

 Manually collection from references

 Data Distribution 

 Cover 83 elements in periodic table

 Contain ordered and disorder structures

 Five Types: 

 Cuprate, H-riched, Heavy fermion, Iron-
based, others

 Tc values range from (0, 290] K
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How to use SuperCon3D?

 Real-world Superconducting Materials
 Imperfection or disorder for tuning Tc.

 Common disordered structures
 Substitutional Disorder (SD):  a site is occupied by more 
than on atomic species.

 Positional Disorder (PD):  one atom in the unit cell occurs 
position shift.

 SD + PD (SPD): both SD and PD can occur simultaneously.

 Interstitial Disorder (ID): atoms occupying interstitial sites 
outside regular lattice positions in a crystal, unseen in 
SuperCon3D dataset.

 Random: unseen in SuperCon3D dataset.

Ordered 39.0K MgB2 

PD 34.3K Mg0.98B2

SD 38.4 K Mg0.9Al0.1B2

Doped Al

Missing Mg
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Graph Representation: Order → Disorder

 Introduce atomic occupancy to redefine material structure
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− Unit cell:
− Lattice:
− Site:
− Conposition: 
− Atomic occupancy:
− Cartesian  coordinate:
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SODNet: Structures -> Tc
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 SODNet: 
 Transformer-based GNN framework 
for representing ordered and disordered 
graphs.

 SE(3)-equivariance through irreducible 
representation-based vector space 
features

Ordered and Disorder Graph 
Representation

 Node embedding：

 Edge embedding：
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KNN Edges
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DiffCSP-SC: Targeting Tc -> Structures

DiffCSP-SC: Equivariant diffusion for superconducting 
crystal structure generation

 Transformer-based architecture

 Diffusion on 𝑪

 Gaussian Prior

 DDPM-based Markov Chain

 Diffusion on 𝑭

 Uniform Prior

 Score Matching + Wrapped Normal Distribution 

Previous work
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DiffCSP-SC: Superconductors Generation

DiffCSP-SC: Equivariant diffusion for superconducting 
crystal structure generation

 Transformer-based architecture

 Input Feature

 Message-Passing Blocks

 Lattice Denoising Term

Periodic E(3) 

Equivariant 

Denoising 

Model 𝜙
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Experiment Results

 SODNet

Model Performance

Ablation Studies



12

Experiment Results

DiffCSP-SC

Model Performance

Ablation Studies

Pretrain on 1.1 million stable material structures
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Experiment Results

 Real-world Superconductors Validation

Outlier: Extreme 
pressure (248 GPa)
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Experiment Results

 Application: Screening Known Structures

Screening entire ICSD, selecting 20 entries

parent compounds exhibit 
superconductivity[1][2]

Disordered compound shows 
superconductivity[3]

Disordered compound 
presents superconductivity[4]

[1]. Physica C: Superconductivity, 227(3-4): 395–398, 1994
[2]. Nature, 414(6862):434–436, 2001.
[3]. PNAS, 116(25):12156–12160, 2019.
[4]. Z Anorg Allg Chem, 640(5): 830–835, 2014.
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Experiment Results

 Application: Generating Novel Structures

Generating Novel Structures (selecting 20 entries)

Calculated by DFT[1]

Predicted by ML[2]

Disorders display 
superconductivity[3] [4]

[1]. JPCCC, 125(6):3640–3649, 2021.
[2]. arXiv preprint arXiv:2301.10474, 2023
[3]. IEEE T APPL SUPERCON, 2023.
[4]. J SUPERCOND NOV MAGN, 33(8):2347–2354, 2020.



16

Why Transformer?

 Relationship Between 
Structures and Tc

 Characteristics of 
superconductors: large 
number of atoms and 
diverse elements.

 Identify key atomic 
contributions to Tc.

Shows potential for atomic-level superconductor design.
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Limitations & Solutions

SuperCon3D

DiffCSP-SC Improving Tc

by Doping

Wet Exp.

SC

Order Cand. Screening

SODNet Score

DFT filter

Top-k

Disorder Cand. Screening

SODNet Score

Top-k

 Limitations

 Data unevenness

 Scarce High Tc data, uneven 
across 5 material types.

 Elemental skewness

 Especially in Cu and O

 Solutions

 More high-quality data

 Proposed pipeline

 SuperCon3D + DiffCSP-SC + 
DFT + SODNet + Wet Exp.
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Conclusion

 A new dataset SuperCon3D containing both ordered-and-
disordered crystal structures and experimental Tc

We propose two deep learning models to showcase the 
possible methods for exploring

 SODNet: Tc predictor

 DiffCSP-SC: Crystal Structures generator targeting high Tc

 Based on our proposed models, we present a list of candidate 
superconductors for future experimental validation

 First report of candidate disordered superconductors using 
GNN methods.
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