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Structural inference in dynamical systems

* In a dynamic system, the topological
structure of interaction may be unknown

— Structural Inference

* Observed data: node-level trajectories
* Example (charged particles)

Nodes Particles
Node features Position (x4, x,), Velocity (v4, v5)
Edges Charges

Interaction Electrostatics force
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Observed dynamics

Interaction graph



Problem

* Existing methods are evaluated on:
 distinct datasets,
* specific graph types
* tailored to different research domains
* unique underlying assumptions

Methods for Structural Inference
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- Urges for a unified, systematic benchmarks across different fields



Our contributions
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* Comprehensive benchmarking
e 13 structural inference methods

* Measures accuracy, scalability, robustness and sensitivity
e Over 706,800 CPU hours and 263,400 GPU hours



Results - Accuracy
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Results - Correlation with Graph Properties

Model performances correlate:
* Positively with average shortest path distance d
* Negatively with average degree (k)
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Results - Scalability
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Results - Robustness to Additive Noise
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summary

Structural inference: finding interaction graph behind dynamic systems

We provide the DoSI dataset with 11 types of graphs, 3 dynamic functions and

213,445 trajectories

We present a unified, systematic benchmark across 13 models from different

fields

We found that:

* Only current deep learning methods can tackle multi-dimension features

e C(Classical statistical methods remain strong on accuracy, robustness and
scalability

* Model performances are correlated positively with average shortest path
distance and negatively with negatively with average degree
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