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What is document?

Fundamental forms of information preservation and exchange
PDF, Word, PPT, ......

Academic paper, Financial report, Tutorial......
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LM for Document

Raw Text

A

VLMs for Document

Screenshot

LVLM

010
RIS

Efficient: No need for document parsing
Effective: Thorough perception on layout structures and
visualized contexts (charts, table, diagram, etc.)




* There lacks a benchmark to evaluating the long-context
document understanding capabilities of VLMs.

Modality

Textual

SQUAD, HotpotQA

LongBench, L-Eval
Document length

Short

Visual

DocVQA, ChartQA

Long-context

9 Yubo Ma
» Large Vision-Language Models (LVLMs) perform ideally on the
understanding of single-page documents like DocVQA, ChartQA.

Here remains an open question@: Can LVLMs handle long documents
well?
We introduce MMLongBench-Docl!

Project Page: mayubo2333.github.io/MMLongBench-Do...
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We propose MMLongBench-Doc!
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No Related Benchmark for Evaluation




We construct MMLongBench-Doc incorporating
7 domains
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Financial Report
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Tutorial / Workshop
(12.6%)

Administration &
Industry File
(7.4%)

Research Report
(25.2%)



« We construct MMLongBench-Doc incorporating
7 domains

« 135 documents
« 47 .5 pages, 20000+ tokens in average
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« We construct MMLongBench-Doc incorporating
7 domains

« 135 documents
« 47 .5 pages, 20000+ tokens in average

Single-Page Question
Question: | want to see a doctor in the campus hospital. After
registering at the registration area, what is the next step?
Answer: Go to the medical department you registered at (i.e.
internal medicine, surgical medicine, dental medicine)
Evidence Page: Page 22
Evidence Source: Image

1082 questions
« Single-page
* Cross-page
« Unanswerable

Cross-Page Question
== Question: I'm at location “J” shown in the
EMER campus map. Tell me the nearest coffee shop.

Answer: Ten Years After Café.

FEEEEE: | Evidence Pages: Page 18, Page 30
Evidence Sources: Image, Table

Unanswerable Question
Question: According to this document, what is the main color of Tsinghua
Campus Bicycle? Give me the color name only.
Answer: Not Answerable

Dataset Example




« Annotation Process

« Step 1: document collection
« Step 2: question collection
 Step 3: quality checking
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Figure 2: The annotation pipeline of MMLONGBENCH-DOC.




 Evaluation Protocol

Question: How many female respondents in wave III never listen to the radio in recent half year?

Reference Answer: 1115

In wave III of the Nepal Media Landscape 2014
survey,
. Given that the
and the
, we can calculate the number of
female respondents who never listened to the radio as follows:

Total number of female respondents =
Number of female respondents who never listened to the radio

Therefore, approximately 1,115 female respondents in wave
III never listened to the radio in the recent half year.

Generated Response

» Evaluation metric:
 Generalized Accuracy
* Generalized F1

LLM-based

Answer Extractor

\ 4

Answer: 1115
Type: integer

Rule-based
Scorer

7
7,
%
“,

n
»

Prediction



» Experiments

Table 3: Evaluation of various models on MMLONGBENCH-DOC. We report the generalized
accuracy of five types of evidence sources including pure text (TXT), layout (LAY), chart (CHA),
table (TAB), and image (IMG). We also present the generalized accuracy of questions categorized
by the number of evidence pages: single-page (SIN), cross-page (MUL), and unanswerable (UNA)

questions. The best and second-best performance in each section are highlighted.

Context Evidence Source Evidence Page
Model #Param . dow| TXT LAY CHA TAB FIG | SIN MUL UNA |ACC F1
OCR (Tesseract [42]) + Large Language Models (LLMs) 50
Open-source Models
ChatGLM-128k [37] 6B 128k | 234 127 97 102 122|188 115 181|163 149 104 - OCR + LLM LVLM
Mistral-Instruct-v0.2 [43] 7B 32k 199 134 102 101 11.0 | 169 113 241 | 164 13.8 ?
Mixtral-Instruct-v0.1 [44] 8x7B 32k 242 148 125 150 13.7 | 213 141 13.1 | 17.0 169 o\
Mixtral-Instruct-v0.1 [44] 8x22B 64k 342 213 195 213 192 | 277 219 324|269 247 Sewt
Proprietary Models @ 301
QWen-Plus [45] - 32k 174 156 74 79 88 | 142 106 422 | 189 134 -
DeepSeek-V2 [46] - 32k 278 196 88 170 94 | 202 154 481|249 196 0
Claude-3 Opus [4] - 32k 308 30.1 164 244 163 | 320 186 309 | 26.9 245 v 20
Gemini-1.5-Pro [3] - 32k 293 159 125 177 115|212 164 734 | 312 248 0
GPT-4-turbo [47] - 128k | 365 21.0 207 243 173 | 287 238 312|276 259 =
GPT-40 [2] - 128k 41.1 234 285 381 224 | 354 293 18.6 | 30.1 305 (19 10
Large Visual Language Models (LVLMs)
Open-source, 7-14B Models 0-
DeepSeek-VL-Chat [48] 1.3B 4k 7.2 6.5 1.6 52 7.6 5.2 70 128 | 74 54 =
Idefics2 [49] 8B 8k 90 106 48 41 87 |77 72 50| 70 68 Open-src Claude-3 Gemini GPT-4V GPT-40
MiniCPM-Llama3-V2.5 [50; 51] 8B 2k 119 108 5.1 59 122 | 95 9.5 4.5 8.5 8.6 -
InternLM-XC2-4KHD [5] 8B 16k 99 143 7.7 63 13.0 | 126 7.6 96 | 10.3 98 (BeSt) (opu S) ( 1 - 5 Pro)
mPLUG-DocOwl 1.5 [52] 8.1B 4k 8.2 8.4 2.0 34 9.9 7.4 6.4 6.2 6.9 6.3
Qwen-VL-Chat [53] 9.6B 6k 5.5 9.0 5.4 22 6.9 5.2 7.1 6.2 6.1 54
Monkey-Chat [54] 9.8B 2k 6.8 7.2 3.6 6.7 9.4 6.6 6.2 6.2 6.2 5.6
Open-source, >14B Models
CogVLM2-LLaMA3-Chat [9] 19B 8k 3.7 2.7 6.0 32 6.9 3.9 5.3 3.7 4.4 4.0
InternVL-Chat-v1.5 [6] 26B 4k 140 162 7.1 101 16.6 | 149 122 175 | 146 13.0
EMU2-Chat [55] 37B 2k 6.1 9.7 2.6 3.8 7.7 5.7 6.1 16.5 | 8.3 5.5
Proprietary Models
Claude-3 Opus [4] - 200k 249 247 148 13.0 17.1 | 256 138 7.6 | 174 18.1
Gemini-1.5-Pro [3] - 128k 210 176 69 145 152 | 21.1 11.1 692 | 282 20.6
GPT-4V(ision) [47] - 128k 344 283 282 324 268 | 364 270 312|324 312
GPT-4o [2] - 128k | 46.3 46.0 453 50.0 44.1 | 545 415 20.2 | 42.8 449

Human Baseline

Human Experts - -] - - - - -] - - - | 658 66.0




Thanks For Your Listening |
explore more details in our paper if you are interested

Project Page: https://mayubo2333.github.io/MMLongBench-Doc
Contact: yuboOO1@e.ntu.edu.sg
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