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* Generating diverse remote sensing (RS) images that are tremendously different from general images in terms of
scale and perspective remains a formidable challenge due to the lack of a comprehensive remote sensing image

generation dataset with various modalities, ground sample distances (GSD), and scenes.
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Simple Text Prompt:
a river is next to
many pieces of
green farmlands-

RGB Image
\ (a) A sample in RSICD dataset
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¢ Information-rich Text Prompt:

v Ordinary precision resolution, fog, a satellite
& image shows a large area of farmland, Secntinel-2-

. Simple text prompt describing image content
' . Ground Sample Distance (GSD) level
. Type of weather
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> In this paper, we propose a Multi-modal, Multi-GSD, Multi-scene Remote Sensing (MMM-RS) dataset and

benchmark for text-to-image generation in diverse remote sensing scenarios.
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(1)We first collect nine publicly available RS datasets and conduct standardization for all samples.

GSD < 0.5m/pixel, GSD prompt:

Utra-high precision resolution.

0.5m/pixel =GSD < 1m/pixel, GSD prompt:
Which GSD level? High precision resolution-

Im/pixel =GSD < Sm/pixel, GSD prompt:

Ordinary precision resolution-

Component 1: GSD-Related Prompts
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Satellite Type: Sentinel-2 y J Fag,
Weather Type : Fog — Sentinel-2
. :
"""""""""""""""" ‘ Component 2: Annotation Prompts
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| BLIP prompt: a satellite image shows |
| a large area of farmland. |
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Component 3: Vision-Language Model Prompts

Information-rich Text Prompt:
Ordinary precision resolution,
fog, a satellite image shows
a large area of farmland,
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(2) To bridge RS images to textual semantic information, we utilize a large-scale pretrained vision-language model to

automatically output text prompts and perform hand-crafted rectification, resulting in information-rich text-image

pairs.

Multi-scene Remote Sensing Image Synthesis i
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Atmospheric
Scattering-based
Degradation Model

low-light Image Snow Image
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(3)We design some methods to obtain the images with different GSD and various environments (e.g., low-light, foggy)

in a single sample.
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GSD: 0 3m/pixel GSD: 2 4m/pixel GSD: 1.2m/pixel GSD: 0.6m/pixel GSD: 0.3m/pixel
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Prompt

High  precision  resolution, a
satellite image shows a small town
in the middle of a field,

High precision resolution, <nou
satellite image shows a park in the
¢city, Google Earth

Ultra-low precision resolution, fog,
a satellite image shows a large
mountain range, 762

High precision resolution, night
satellite image shows a street in a
residential area, Google EFarth
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Prompt

Ultra-high  precision resolution, a
satellite image shows the area
around a large city, Google Earth

High precision resolution, a satellite
image shows the area around a large
city, Google Earth

Ordinary  precision  resolution, a
satellite image shows the area
around a large city, Google Earth

Low precision resolution, a satellite
image shows the area around a large
city, Google Earth
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RGB — NIR

Low precision resolution, a satellite
image of a mountain with a river
running through it, GF7

Low precision resolution, a sateliite
image of a city with a river, GF]

RGB il SAR NIR — RGB

Low precision resolution, a satellite
image shows a river flowing through
the mountains, GFT

Low precision re.safui:mr?, a mtaﬂ':te
image shows a city, Sentinel

Low precision resolution, a sa!:e.".l':ts
:mage shows some roads in farmland,
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Low precision resolution, a satellite
image of a village with a river
running through it, Sentinel-7

Low precision resolution, a satellite
image shows large areas of lakes and
rivers, Sentinef-2

Low precision resolution, a satellite
image of a city with a river, GFJ
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. We construct a large-scale Multi-modal, Multi-GSD, and Multi-scene Remote Sensing (MMM-RS) dataset and benchmark
for text-to-image generation in diverse RS scenarios, which standardizes 9 publicly available RS datasets with uniform and
information-rich text prompts.

. To provide the various GSD samples, we design a GSD sample extraction strategy that extracts different GSD levels
images for each sample and define the GSD-related text prompts describing different GSD levels. Furthermore, due to the
lack of real-world multi-scene samples, we select some RGB samples and utilize existing techniques to synthesize samples
with different scenes including fog, snow, and low-light environments.

. We use our proposed MMM-RS dataset to fine-tune the advanced Stable Diffusion, and perform extensive quantitative and
qualitative comparisons to prove the effectiveness of our MMM-RS dataset. In particular, we use the aligned multi-modal

samples (including RGB, SAR, and infrared modalities) in the MMM-RS dataset to train the cross-modal generation

models based on ControlNet, and the visualization results demonstrates impressive cross-modal generation capabilities.



