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Generation Inconsistency & Stereotype Randomness %

The nurse found that [Y] The nurselannounced|that [Y] :
97% probability to 88% probability to
choose a male- choose a female-

oriented word for [Y]. oriented word for [Y].
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The nurse found that [Y] The nurse announced that [Y] :
97% probability to 88% probability to
choose a male- choose a female-

oriented word for [Y]. oriented word for [Y].

Average Stereotype
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Assessing Average Behavior Is Not Enough

Context 1 | Context 2
Fair LLM (0.5,0.5) (0.5,0.5)

Unfair LLM | (0.4,0.6) | (0.6,0.4)
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Assessing Average Is Not Enough

Context 1 | Context 2
)|Fair LLM | (0.5,0.5) | (0.5,0.5)
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Assessing Average Behavior Is Not Enough

Context 1 |Context 2 | Average
¢ | Fair LLM (0.5,0.5) (0.5,0.5) |(0.5,0.5)
O unfair LLM | (0.4,06) | (0.6,04) |(0.5,05)
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The Same Average
Behavior of Different
Discrimination Risk
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Bias and Volatility Framework(BVF) - Overview Ri

Evaluating stereotype

Analyzing LLM distribution by
behavior across (1Q© discrimination
varying contexts. \—

risk criterion.

i

pro-male |
stereotype -
! Y
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Female P 0 e, 5

1. Estimating the 2. Estimating the

Distribution of Context  Distribution of Stereotypes 4. Decomposing
Discrimination Risk

3. Evaluating
Discrimination Risk
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Bias and Volatility Framework(BVF) - Step 1 %,

|$| F=W Gendered Word Wd Faill Coreference
T b Recognizer Detection
In a bustling city, was called to a seemingly ordinary burglary case. The
victim was a =% named Diana, whose collection of rare coins had vanished.
said that ™ would leave no stone unturned to recover the collection. P
nt to Approximate 2
Upon investigating the crime scene, z noticed a strange pattern of footprints leading to

the neighboring house. Curiosity pigued decided to pay a visit to the
neighbor. There, ﬁ met a youn m named Tim, who seemed nervous and

fidgety. found that [T had taken the coins. But it wasn't out of malice;

the ﬂ had only wanted to study them for a school project on ancient civilizations.

3. Evaluating
Discrimination Risk

pro-male
stereotype

@ e
Female P I

1. Estimating the 2. Estimating the

Distribution of Context  Distribution of Stereotypes 4. Decomposing
Discrimination Risk
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Bias and Volatility Framework(BVF) - Step 2 Ao a ST
Stereotype
M Py, (c) B
HORE
3. Evaluating
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pro-male
stereotype
> '
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2. Estimating the

1. Estimating the

Distribution of Context  Distribution of Stereotypes

Discrimination Risk

4. Decomposing
Discrimination Risk
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Bias and Volatility Framework(BVF) - Step 3 Ao a ST
Stereotype Discrimination Risk Criterion Discrimination Risk
p%s(c) J(sM (c)) = max{s™ (¢)"} _ M
sﬁﬂ,(c) = — —1 Y]z gy Uyl ra = Eevc(J(sy),(c)))
Y py|$(c)
3. Evaluating

Discrimination Risk
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1. Estimating the 2. Estimating the

Distribution of Context  Distribution of Stereotypes 4. Decomposing
Discrimination Risk
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Bias and Volatility Framework(BVF) - Step 4 Ao a ST
Stereotype Discrimination Risk Criterion Discrimination Risk
p%s(c) J(sM (c)) = max{s™ (¢)"} _ M
sﬁﬂ,(c) = — —1 Y]z gy Uyl ra = Eevc(J(sy),(c)))
Y py|$(c)
3. Evaluating

Discrimination Risk

Ipro—male | I; :
Istereotype -
> | > PRI Bias Risk
onde Py Wk, D) rh = J(Eenc(sy,(0)))
Volatility Risk

1. Estimating the 2. Estimating the P b

Distribution of Context  Distribution of Stereotypes 4. Decomposing
Discrimination Risk




Rank of Discrimination Risk
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Most language models exhibit a pro-male bias T

The stereotype is
/ biased toward male.
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The stereotype is
biased toward female.



Higher-Income Professions Face Greater Discrimination
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Figure 5. The regressions between income and discrimination risk.
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Impacts of Model Training Techniques on %
Bias Risk and Volatility Risk '
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Impact of Toxic Data

Toxic data reinforces the model's
systemic bias, leading to an increase
in overall bias risk and a decrease in
overall volatility risk.
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Impact of Model Size

Larger models tend to show more bias
gt but less volatility, implying they may
v 2 overfit to biases in data while providing
more consistent discriminatory patterns.

Volability

137 335M Bl ™M 13b 161b 2.7h 20b
Model Size
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The chat versions refined with RLHF exhibit a lower bias risk
compared to the base versions, yet they possess a higher
volatility risk.
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* We quantify the associated risk linked to the stereotype distribution
iInherent in LLMs. Furthermore, we decompose the total risk into two distinct
components: the risk originating from persistent bias and the risk arising
from volatility in stereotype representation.

« We applied our discrimination-measuring framework to 12 commonly used
LLMSs, leading to some intriguing findings. These include observations of pro-
male bias, discrimination patterns within higher-income professions, and

insights into how different model training techniques impact both bias risk
and volatility risk.
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