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Background and motivation

Existing LLM compression works are still far away from practical usage due to two main challenges:

◆ Challenge 1: Performance evaluation scope is limited. 

➢ Current LLM compression researches often use different types of LLMs for evaluation, which cannot form a fair 

comparison between different methods. 

➢ The base model performance is different in current works. (e.g., LLaMA-7B--PPL: 12.62 in LLM-Pruner, 5.68 in 

OmniQuant)

◆ Challenge-2: Efficiency evaluation metric remains theoretical. 

➢ Current methods lack a comprehensive evaluation of broader efficiency metrics in actual deployment scenarios. (e.g., 

practical acceleration, GPU memory reduction)



Overview of our LLMCBench



LLMCBench: Tracks and Metrics

➢ Knowledge ability:  whether the LLM knows the world

➢ Inference ability:  whether the LLM can reason based on its knowledge

Track 1: Compression Performance

Track 2: Generalization Ability

An effective LLM compression algorithm should be effective for various model types and sizes.

➢ Model type:  LLaMA2, LLaMA3, OPT, ChatGLM2, ChatGLM3, Vicuna

➢ Model size:  7B, 13B, 30B, 70B, etc.



LLMCBench: Tracks and Metrics

An effective LLM compression algorithm should require small resources to finish the compression process. 

➢ Training time

➢ GPU memory

Track 3: Training Consumption

Track 4: Inference Consumption

➢ MACs

➢ GPU memory

➢ Model size



LLMCBench: Tracks and Metrics

Existing LLM compression approaches seldom extensively compare this important aspect, making the acceleration 

performance remain theoretical.

➢ TensorRT-LLM

➢ vLLM

➢ MLC-LLM

Track 5: Hardware Acceleration

Track 6: Trustworthiness

Since the compressed LLMs need to be deployed in real-world scenarios, their trustworthiness is also a key aspect 

to avoid negative social impacts.

➢ Robustness

➢ Truthfulness



Evaluation and analysis

Track 1: Compression Performance

◆ Quantization offers better overall performance.

◆ Sparsity is better for inference ability, while 

quantization is better for knowledge ability.

Track 2: Generalization Ability

◆ Weight-only quantization methods have good 

generalization ability under lower bit. 



Evaluation and analysis

Track 3: Training Consumption

◆ Learning is the bottleneck.

Track 4: Inference Consumption

◆ Quantization generally has less inference consumption.



Evaluation and analysis

Track 5: Hardware Acceleration

◆ INT4 quantization has the best acceleration performance.

◆ Structured sparsity ≈ INT8 quantization.

◆ Structured 2:4 sparsity is not well-supported.

Track 6: Trustworthiness

◆ Quantization brings better trustworthiness.

◆ Better compression performance ≠ better trustworthiness.



Conclusion

◆ Quantization is preferable for LLM compression due to improved performance and hardware compatibility.

◆ Weight-activation quantization is better in terms of inference efficiency (inference consumption and hardware 

acceleration). 

◆ Sparsity generally has better training efficiency. However, its hardware/library support is not well constructed 

in the current stage. 

Resources

◆ GitHub: https://github.com/AboveParadise/LLMCBench

◆ Contact: jinyangguo@buaa.edu.cn

https://github.com/AboveParadise/LLMCBench

