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Introduction

The exact calculation of Ml is impossible
when we can only access the examples sampled from joint and marginals
but not the underlying distribution functions.

=» We often rely on sample-based Ml estimators.
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Estimation accuracy of sample-based Ml estimators

Gaussian datasets Complex unstructured datasets
(e.g., images, texts)

Tractable distributions Intractable distributions
- Tractable true Mi -> Intractable true Ml



Introduction

Estimation accuracy of sample-based Ml estimators

Gaussian datasets Complex unstructured datasets
(e.g., images, texts)

Do estimators that perform well on Gaussian datasets
also excel with more complex datasets like images or texts?
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Tractable distributions Intractable distributions
- Tractable true Mi -> Intractable true Ml



Main contributions

We present a method for evaluating Ml estimators on any dataset in the absence of

underlying distribution functions.
« Same-class sampling as positive pairing
« Binary symmetric channels

We suggest a benchmark suite based on our method, encompassing three data
domains for Gaussian multivariates, images and sentence embeddings.

We examine performance of several neural M| estimators over seven key aspects:
critic architecture, critic capacity, choice of neural Ml estimator, number of information sources,
representation dimension, strength of nuisance, and layer-dependency.



Our benchmark suite

Same-class sampling for positive pairing

« When only the class information is shared between two random variables X and Y, the true Ml is
proven to be the same as the entropy of the class variable C.

« [(X;Y)=H(C) for any choice of data domain.

[Reference] Lee et al., Towards a rigorous analysis of mutual information in contrastive learning, 2024.



Our benchmark suite

Generating datasets with adjustable true Ml values
Plain setup: Using a binary random variable C where p(0)=p(1)=0.5, I(X;Y) =1(bit)
* Images: MNIST 0/1 images
« Texts: BERT fine-tuned sentence embeddings of IMDB datasets

Larger MI: Concatenating the samples of I(X;Y) =1

Nuisance: Inserting random samples from CIFAR-10 in the background

(a) Basic construction
I(X;Y) = 1bit

(b) Concatenate in (X, y)-coordinates

I(X;Y) = 4bits

(¢) Concatenate in channel dimension

I(X;Y) = 3bits

(d) Adding nuisance (n = 1)
IX;Y) = 1bit
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Our benchmark suite

Manipulating Ml to non-integer values: Binary symmetric channel

« To manipulate the true Ml and construct a dataset with a non-integer Ml value, we adopt the concept
of binary symmetric channel (BSC).

« With BSC, X is always consistent with the class variable C but Y is noisy where it is different from C
with a crossover probability of 5.

-0 0.0 - m Theorem 4.4 (Manipulating MI to be non-integer). When the information source C'is transmitted

/ perfectly to X, while it is transmitted to Y over a binary symmetric channel (BSC) with a crossover
, probability B € [0, 0.5], the mutual information 1(X;Y ) between X and Y is determined as follows.
 / IER 12=21 - g I(X;Y)=H(C)x (1-H(p)) (D

[Reference] T. M. Cover, Elements of information theory, 1999.



Empirical investigations
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Empirical investigations

» Choice of critic architecture: superiority of joint critic for unstructured datasets

» Choice of critic capacity: larger capacity does not ensure a higher estimation accuracy

« Choice of Ml estimator: no universal winner exists across the three data domains

« Number of information sources: unstructured datasets outperform Gaussian in handling larger d
« Representation dimension: it does not affect the estimation accuracy

* Nuisance: MINE turns out to be relatively robust

« Network and layer dependency: estimation holds for invertible networks and upper layers
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