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Introduction

* Challenges in Multi-Agent Games
= Dynamic environments
= Strategies and actions of opponents
— Fully observable MDP: Chess, Go, Habani, etc.

— Partially observable MDP (POMDP): SMAC, GRF, MPE, etc.

Figure 1. SMAC

Fig. 1: https://starcraft2.blizzard.com/
Fig. 2: https://chesspathways.com/chess-openings/
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Background

* Centralized Training and Decentralized Execution (CTDE)
= Recent works in MARL have focused on CTDE

= Leverage global information to train a centralized critic or joint Q-function
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Figure 3. QMIX architecture Figure 4. CTDE framework

Fig. 3: Tabish et al., QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Fig. 4: Saeed et al., DeepMPR: Enhancing Opportunistic Routing in Wireless Networks through Multi-Agent Deep Reinforcement Learning 3
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Background

* IQ-Learn: A SOTA Imitation Learning Algorithm

= |Q-Learn reduces the IRL problem to a single optimization over the Q-function:

maxmin{/(r, Q) = E,[$(Q(s, @) = VB _pis) [V (SD)] = (1 = PIBspmp [V (501

where:
VT[(S) = Ea~7‘r(-|s) [Q(sr a) - logn(a|s)]
= ¢ is a concave function that defines the statistical divergence between expert and learned policies

= For a fixed Q-function, the policy m is updated to maximize:

Es~D,a~n(-|s) [Q(s,a) —logm(als)]
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Multi-Agent POMDP Setting

» The multi-agent POMDP can be represented as a tuple {S, V,, N,, A%, A%, P, R}, where:
= S is the global state shared by all agents
= NV, N, are the set of ally, enemy agents respectively
= A%, A® are the join action space of ally, enemy agents respectively
= P is the transition dynamics

= R is the reward function

* The objective is to find a policy for the ally agents that maximizes their expected joint reward over
time:

max E(qe 5, [R(S, A9)]

where:
- Mo (A%]S) = [lien, mi* (af'|of") is the joint policy of ally agents.

= i (af|of") is the policy of agent i based on its local observation of*
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Challenge

* Partial Observability

= Each agent relying only on local observations

* Decentralized Decision Making * We need predict opponent behavior
= Make decisions independently = Reduce uncertainty
= Without direct communication / = Coordinate more effectively

* Dynamic Environment — Improving decision-making

- States change over time — Improving team coordination

= Requires agents to adapt their strategies — Improving learning efficiency
* Hidden Actions of Opponents

= Opponent actions are not directly observable
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Our Solution: Opponent Policy Imitation

 Actions are unobservable — Opponent Next-State Prediction as an IL, where:
= “Expert” state is a pair W = (S, A%), A% is the joint action of allies in the previous step that led to state S

- “Expert” action is the next enemy state Senext

* Adapt to IQ-Learn
l’%%X r%ien {](ﬁe’ Oe) = ZiENa E(Sie'neXt‘Wl?‘),vpeﬂ [¢ (Qe(sf,neXt; Wla) — )/Ewlq,next [Vl'? (Wia,next)])] — (1 — )/)EW%~P0,H“ [Vl-?(Wl%)]}

where

VW) = Egenext_qe[Q°(S7™*, wit) — log e (S |wf)]

- For a fixed Q¢, the policy I1¢ is updated by soft actor-critic (SAC)
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Our Solution: IMAX-PPO

af ~ g(- lof, Sfme*)
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Figure 5. Our IMAX-PPO Framework
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Experiments

Tasks | Scenarios | MAPPO IPPO OQMIX QPLEX Mil;'l;)o &Iﬁx'l’l‘; %
5 vs_5 580 546 702 533 718 | 68.1 787
ovac | 1010 | 583 580 690 537 673 | 596 798
SMAC | g0 vs i | 182 203 425 228 367 | 213 487
20 vs 20 | 381 445 697 272 711 763 80.6
20vs 23 | 5.1 41 165 48 219 118 242
5 vs.5 520 562 584 700 558 | 533 699
avac | 100vs 10 [ S81 573 658 661 54.1 584 722
SMAC 0w i1 | 286 310 394 414 269 | 284 539
20 vs 20 | 528 496 576 239 386 | 359 654
0vs 23 | 112 100 100 7.0 112 47 1717
5 vs_5 410 372 372 478 525 | 486  55.0
ovac | 10vs 10 | 301 494 408 4L6 574 | 506 576
e | 1001|312 260 280 3L 38.1 348 415
20 vs 20 | 319 312 304 158 43 | 267 433
20 vs 23 | 158 §3 101 6.7 13.6 $2 213
Gord casy 489 493 572 598 47,1 545 618
GOl medium | 406 395 473 504 394 | 393 550
hard 312 312 417 435 313 | 297 498
3 vs_ 1 880 827 8.1 902 96.1 964 981
GRF casy 878 841 160 949 807 | 641  95.0
hard 774 709 32 951 10.7 152 973

Figure 6. Win-rate percentages of various MARL algorithms across different
tasks and scenarios. Higher is better.
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Conclusion

» We introduce a novel IL model designed to predict the next moves of opponents in multi-
agent games.

* We develop a new MARL algorithm called IMAX-PPO, which integrates our IL model with policy
training.

* A comprehensive theoretical analysis is provided, which includes bounds on the impact of the
changing policies of allied agents on the IL outcomes.

* Extensive experiments conducted in various challenging game environments, such as SMACv?2,
Google Research Football, and Gold Miner, demonstrate that the proposed IMAX-PPO algorithm
consistently outperforms state-of-the-art MARL algorithms.
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