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Introduction

• Challenges in Multi-Agent Games

▪ Dynamic environments

▪ Strategies and actions of opponents

– Fully observable MDP: Chess, Go, Habani, etc.

– Partially observable MDP (POMDP): SMAC, GRF, MPE, etc.

Fig. 1: https://starcraft2.blizzard.com/
Fig. 2: https://chesspathways.com/chess-openings/ 2

Figure 1. SMAC Figure 2. Chess



Background

• Centralized Training and Decentralized Execution (CTDE)

▪ Recent works in MARL have focused on CTDE

▪ Leverage global information to train a centralized critic or joint Q-function

▪ Face challenges in efficiently and stably learning agent behaviors
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Figure 3. QMIX architecture Figure 4. CTDE framework

Fig. 3: Tabish et al., QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Fig. 4: Saeed et al., DeepMPR: Enhancing Opportunistic Routing in Wireless Networks through Multi-Agent Deep Reinforcement Learning



Background
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• IQ-Learn: A SOTA Imitation Learning Algorithm

▪ IQ-Learn reduces the IRL problem to a single optimization over the Q-function:

max
𝑄∈Ω

min
𝜋∈Π

𝐽 𝜋, 𝑄 = Ε𝜌𝐸
𝜙 𝑄 𝑠, 𝑎 − 𝛾Ε𝑠′∼𝑃 ⋅|𝑠,𝑎 𝑉𝜋 𝑠′ − 1 − 𝛾 Ε𝑠0∼𝜌0

𝑉𝜋 𝑠0

   where:

𝑉𝜋 𝑠 = Ε𝑎∼𝜋 ⋅|𝑠 𝑄 𝑠, 𝑎 − log 𝜋 𝑎|𝑠

▪ 𝜙 is a concave function that defines the statistical divergence between expert and learned policies

▪ For a fixed Q-function, the policy 𝜋 is updated to maximize:

Ε𝑠∼𝐷,𝑎∼𝜋 ⋅|𝑠 𝑄 𝑠, 𝑎 − log 𝜋 𝑎|𝑠



Multi-Agent POMDP Setting
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• The multi-agent POMDP can be represented as a tuple 𝑆, 𝒩𝛼 , 𝒩𝑒 , 𝐴𝛼 , 𝐴𝑒 , 𝑃, 𝑅 , where:

▪ 𝑆 is the global state shared by all agents

▪ 𝒩𝛼, 𝒩𝑒 are the set of ally, enemy agents respectively

▪ 𝐴𝛼, 𝐴𝑒  are the join action space of ally, enemy agents respectively

▪ 𝑃 is the transition dynamics

▪ 𝑅 is the reward function

• The objective is to find a policy for the ally agents that maximizes their expected joint reward over 
time:

max
Π𝛼

Ε 𝐴𝛼,𝑆 ∼Π𝛼
𝑅 𝑆, 𝐴𝛼

   where:

▪ Π𝛼 𝐴𝛼|𝑆 = ς𝑖∈𝒩𝛼
𝜋𝑖

𝛼 𝑎𝑖
𝛼|𝑜𝑖

𝛼  is the joint policy of ally agents.

▪ 𝜋𝑖
𝛼 𝑎𝑖

𝛼|𝑜𝑖
𝛼  is the policy of agent 𝑖 based on its local observation 𝑜𝑖

𝛼



Challenge
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• Partial Observability

▪ Each agent relying only on local observations

• Decentralized Decision Making

▪ Make decisions independently

▪ Without direct communication 

• Dynamic Environment

▪ States change over time

▪ Requires agents to adapt their strategies

• Hidden Actions of Opponents

▪ Opponent actions are not directly observable

• We need predict opponent behavior

▪ Reduce uncertainty

▪ Coordinate more effectively

→ Improving decision-making

→ Improving team coordination

→ Improving learning efficiency



Our Solution: Opponent Policy Imitation

7

• Actions are unobservable → Opponent Next-State Prediction as an IL, where:

▪ “Expert” state is a pair 𝑊 = 𝑆, 𝐴−
𝛼 , 𝐴−

𝛼  is the joint action of allies in the previous step that led to state 𝑆

▪ “Expert” action is the next enemy state 𝑆𝑒,next

• Adapt to IQ-Learn

 max
෠𝑄𝑒

min
෡Π𝑒

𝐽 ෡Π𝑒 , ෠𝑄𝑒 = σ𝑖∈𝒩𝛼
Ε

𝑆𝑖
𝑒,next,𝑤𝑖

𝛼 ∼𝜌𝑒,𝛼 𝜙 ෠𝑄𝑒 𝑆𝑖
𝑒,next, 𝑤𝑖

𝛼 − 𝛾Ε
𝑤𝑖

𝛼,next 𝑉Π
𝑒 𝑤𝑖

𝛼,next − 1 − 𝛾 Ε𝑤𝑖0
𝛼 ∼𝑃0,Π𝛼 𝑉Π

𝑒 𝑤𝑖0
𝛼

   where

𝑉Π
𝑒 𝑤𝑖

𝛼 = Ε
𝑆𝑖

𝑒,next∼෡Π𝑒 ෠𝑄𝑒 𝑆𝑖
𝑒,next, 𝑤𝑖

𝛼 − log ෡Π𝑒 𝑆𝑖
𝑒,next|𝑤𝑖

𝛼

• For a fixed ෠𝑄𝑒, the policy ෡Π𝑒 is updated by soft actor-critic (SAC)



Our Solution: IMAX-PPO
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Figure 5. Our IMAX-PPO Framework



Experiments
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Figure 6. Win-rate percentages of various MARL algorithms across different 
tasks and scenarios. Higher is better.



Conclusion
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• We introduce a novel IL model designed to predict the next moves of opponents in multi-

agent games.

• We develop a new MARL algorithm called IMAX-PPO, which integrates our IL model with policy 
training.

• A comprehensive theoretical analysis is provided, which includes bounds on the impact of the 
changing policies of allied agents on the IL outcomes.

• Extensive experiments conducted in various challenging game environments, such as SMACv2, 
Google Research Football, and Gold Miner, demonstrate that the proposed IMAX-PPO algorithm 
consistently outperforms state-of-the-art MARL algorithms.
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