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Background

 Scalable Properties of Vision Transformer: When scaling up the data size and

model size, the performance of vision transformer increases constantly.
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Motivation of This Work

* Large ViT models with mass pre-training have attained state-of-the-art

performance.

* Motivation: Whether large pre-trained ViT models could be used as teachers that
effectively transfer their scalable properties to target student models having

different typed architectures such as CNN and MLP or heterogeneous ViT

structures.



Problem Analysis

* To answer the question in our motivation, we think the knowledge transfer
difficulties are rooted in the following three aspects of differences:

* Difference in feature computing paradigm.
* Difference in model scale.

* Difference in knowledge density.

* The first difference is explicitly defined, while the other two are intertwined under
the prevailing pre-training and fine-tuning paradigm and are finally encoded in

teacher and student models’ feature space and parameter space.



Two observations in Feature Space and

Parameter space

* Feature Space: The frequency distributions of the features
for the pre-trained ViTs are extremely imbalanced, where
the direct component (zero frequency) response is

dominant among all frequencies.

 Parameter Space: As the parameters of the pre-trained
ViTs in the fine-tuning stage are slightly changed, their

pre-training knowledge remains in the parameter space.
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Figure 2: Feature distribution of
BEiT-L/14 [41] in the frequency
domain, where the direct compo-
nent response is dominant. De-
tails on drawing this figure are
shown in Figure 5.



Three Core Components in ScaleKD

* Cross Attention Projector -> Aligning feature computing paradigm differences
* Dual-view Feature Mimicking -> Learning in Feature Space

* Teacher Parameter Perception -> Learning in Parameter Space
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(a) Cross Attention Projector (CAP) (b) Dual-view Feature Mimicking (DFM) (c¢) Teacher Parameter Perception (TPP)



Cross Attention Projector

 CAP adopts the structure of a standard transformer

decoder block, but incorporates three critical p NIEESECEEE .
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Dual-view Feature Mimicking

In the first path, DFM conducts feature mimicking in the

teacher’s original feature space: ,,; = aL(Ft, f,, (F*,q1))

In the second path, the dominant direct component

should be removed. Thus, we define:

6(z) = DOT Y (o(DCT(z)))  st. o(2) :{ gj 2;8 .

Next, feature mimicking in the second path is formulated

as: Loy = aL(G(F"), (fp, (F*; q2)))

Now, the feature distillation loss of DFM is formulated as:

Lpry = BLori + (1 — B)Lait,
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Teacher Parameter Perception

* TPP establishes a proxy feature processing path by
connecting the student’s early stages to the teacher’s
later stages through a CAP. The feature mimicking in the

L5t = qL(F*t, F5t).

proxy path is formulated as:

* With a simple principle of equal treatment to the two
feature mimicking paths, the feature distillation loss of
TPP is defined as:
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(c) Teacher Parameter Perception (TPP)



The Overall Formulation of ScaleKD

* From a general perspective, the progressive designs of our above three components are

naturally coupled.

* As CAP serves as the basic componentin DFM and TPP, we further introduce how to apply
DFM in TPP and get a neat formulation of our method, ScaleKD. Specifically, if treating DFM
as an improved version of traditional feature mimicking, it can substitute the original feature

mimicking in each path of TPP.

LscalexD = Ltask + Bolm ( — B)L azt 5053; ( /B)OLagt + Lid,
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Pilot Experiments under Basic Settings

Table 1: Pilot experiments on cross architec- Table 2: Pilot experiments on scaling up the teacher
ture distillation with ScaleKD and FD. s; de- size. The advanced training strategy uses more
notes the distillation is conducted on stage-i. To  sophisticated data augmentation and optimizer, and

clearly show the performance gain, experiments  longer training epochs, as shown in Table 10.
in this table are conducted without L.

Teacher | Student | Ratioof T/S Params | Top-1(%) | ATop-1(%)
Teacher | Student | Method ‘ Top-1(%) | ATop-1(%) ScaleKD with Traditional Training Strategy
, Baseline - 76.55 -
Baseline 76.55 - Swin-S (83.02) | oo oo 1.94 79.62 +3.07
ResNet.50 | TP (s4) 77.43 +0.88 Swin-B (85.16) sivet: 3.43x 79.80 +325
FD (s3.54) 71.74 +1.19 Swin-L (86.24) 7.68 80.10 +3.55
. ScaleKD 79.30 +2.75
Swin-S (83.02) ScaleKD with Advanced Training Strategy
Baseline 74.02 i Baseline - 78.64 -
Mixer-S FD (s4) 74.88 +0.86 Swin-S (83.02) | b \ers0 1.94 81.43 +2.79
FD (s3.s4) 75.32 +1.30 Swin-B (85.16) e 3.43 81.77 +3.13
ScaleKD 77.24 +3.22 Swin-L (86.24) 7.68 x 82.03 +3.39




Main Results

Table 3: Main results of ScaleKD on 11 teacher-student network pairs. | denotes the model pre-
trained on IN-22K [45] and { denotes the model pre-trained by EVA [41], which has the learned
knowledge of LAION-2B [48].

Teacher Student Params (M) FLOPs (G) Accuracy (%)
T S T S Top-1 ATop-1

MobileNet-V1 (72.10) 4.23 0.58 75.15 +3.05
ResNet-50 (78.64) 196.53 25.56  34.04 4.12 82.03 +3.39
ConvNeXt-T (82.14) 28.59 4.46 84.16 +2.02

SwinLT (86.24) Mixer-S/16 (74.02) 196.53 18.53 34.04 3.78 78.63 +4.61
Mixer-B/16 (76.44) 59.88 12.61 81.96 +5.52
ViT-S/16 (79.90) 22.05 4.61 83.93 +4.03
Swin-T (81.18) 196.53 28.29  34.04 4.36 83.80 +2.62
ViT-B/16 (81.80) 86.57 17.58 85.53 +3.73
ResNet-50 (78.64) 25.56 4.12 82.34 +3.70

BEIT-L/14* (88.58)  Mixer-B/14 (76.62) 304.14  59.88 81.06 16.45 82.89 +6.27

ViT-B/14 (82.02) 86.57 23.09 86.43 +4.41




The Scalable Properties from Teacher’s Pre-
training Data

Table 4: Experiments on exploring scalable properties from the teacher’s pre-training data. We use
the best reported models with different pre-training methods as our baselines to examine whether our
student model has learned the teacher’s pre-training knowledge. We use Swin-L as the teacher for the
first two experiments and BEiT-L/14 as the teacher for the rest two experiments. = denotes transfer
learning and * denotes the model is trained and tested with 384 x 384 sample resolution.

Model | Method ‘ Training Dataset | Dataset Samples x Epochs (M) | Viewed Samples (M) | Top-1(%)

Supervised pre-training

.. IN-22K = IN-1K 13.7x90 4+ 1.28x 32 1274 83.97
Pre-training [4]

VIT-B/16 JFT-300 = IN-1K 300x7 + 1.28%32 2141 84.15
| ScalekKD | IN-1K | 1.28 X300 | 384 | 8553
Self-supervised pre-training
‘ BEiT [40] IN-22K = IN-1K ’ 13.7x 150 + 1.28 % 100 ’ 2183 ‘ 83.70
VIT-B/16 iBOT [11] IN-22K = IN-1K 13.7x320 + 1.28 % 100 4512 84.40
| ScaleKD | IN-1K | 1.28 x 300 | 384 | 85.64
Cross-modal pre-training
R ‘ CLIP [13] LAION-2B = IN-1K ‘ 232032 + 1.28 x50 ’ 74304 ‘ 85.47
LAION-2B = IN-12K = IN-1K | 2320x32 + 12.1x60 + 1.28%50 75030 86.17
ViT-B/14 | ScaleKD | IN-1K | 1.28 x 300 | 384 | 8643
EVA hybrid pre-training (MIM distillation from the cross-modal pre-trained teacher)
| EVA-02[49] | IN-22K = IN-1K | 13.7x240 + 1.28 x50 | 3352 | 8580

EVAQ02-S/14*

| ScaleKD | IN-1K | 1.28 x 300 | 384 | 8622




Transferring to Downstream Tasks

* To further examine whether the performance
gains from our method could be well
preserved in transfer learning, we conduct
comparative experiments on MS-COCO for
object detection and instance segmentation,

and on ADE20K for semantic segmentation.

Table 6: Transfer learning results (%) on ADE20K.

Framework | Backbone | Pre-training | IN-1K (Top-1) | ADE20K (mIOU)
ResNet-50 gﬂiﬁﬁm} 82‘(]-‘;8(‘ ?; 39) 44, 5?}2(‘ i; 13)

UperNet Swin-T Oure $3.80 (42.62) 1633 (+41.92)
VITB6 | Gt 85,53 (+3.73) 50.84 (14.09)

Table 5: Transfer learning results (%) on MS-COCO.

Framework Backbone Pre-training Classification (IN-1K) Object Detection (COCQO) Instance Segmentation (COCQO)
: Top-1 AP APg APy AP AP APg APy AP
_ Baseline 78.64 40.2 23.0 44.3 52.5 37.1 18.0 40.1 54.9
ResNet-30 | ourg 82.03 (+3.39) 423 255 46.5 546 | 39.1 19.3 425 57.1
Mask R-CNN
Swin-T Baseline 81.18 42.7 26.5 459 56.6 393 205 41.8 57.8
Ours 83.80 (+2.62) 44.4 28.7 47.9 58.6 40.8 21.8 43.7 59.8




Conclusion

* Inthis paper, we present ScaleKD, a new cross architecture KD approach for transferring the
scalable properties of pre-trained large ViTs to various CNNs, MLPs and heterogeneous ViTs.

* Our method consists of three tightly coupled components that rely on principled designs to align
computing paradigm differences, model scale differences, and knowledge density differences
between the teacher and the student.

* By conducting systematic experiments on several mainstream large-scale vision benchmarks, we
broadly validate the effectiveness and generalization ability of our method.

* Benefiting from its novel motivation and design insights, ScaleKD is the first work which
successfully verified that KD can be a more efficient alternative to the time-intensive pre-training,
to the best of our knowledge. This extends the application scope of KD from model compression

to training acceleration.
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