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Generative Modeling for Material Discovery

P Discovering new, stable materials is a key challenge in material
science.

» Prior generative methods used denoising methods (diffusion,
flow matching), or large language models (LLMs), which have
complementary strengths.

» LLMs excel at generating discrete variables (atom types).
» Denoising methods excel at continue values.

» Question: How do we get the best of both worlds?
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» We introduce FlowLLM, a simple yet effective method to
combine LLMs and Riemannian Flow Matching (RFM).



Crystal Representation

A crystals with n € N atoms can be represented
as: ¢ = (a,f,l) € C, consisting of:

> Lattice, /, defined using three side lengths
(a,b,c) € R* in A, and three internal
angles (o, 8,7) € [60°,120°].

> Atom types are categorical vectors:
a:=[a',...,a"], where ' € A.

> Atom positions represented using
fractional coordinates on a flat torus:
f=[f. .. f"], ffe F=T53 The
positions “wrap around” the unit cell.



FlowLLM Model

FlowLLM generates materials via
a two step process — it first sam-
ples an initial, noisy sample from
an LLM, followed by an iterative
refinement process using an RFM
model:
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The LLM serves as the learned
prior distribution for the RFM.




Large Language Model for Base Distribution

To train the LLM part of the

model, we represent crystals using sass.
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This closely follows Crystal-LLM?.

1 Gruver et al."Fine-Tuned Language Models Generate Stable Inorganic Materials as
Text”, ICLR 2024



Denoising with Riemannian Flow Matching

The output of the LLM is refined using Riemmannian Flow Matching
with a suitable product manifold to represent crystals following
FlowMM?2.

» Atom positions are represented on a flat torus, and lattice
parameters in euclidean space. Atom types are kept fixed.

» We use an equivariant GNN for the velocity function.
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FlowLLM Model Training

We train the our model in 3 steps:

1. The LLM is first trained independently to generate a text
representation of the material, with suitable prompting by
fine-tuning a 70B parameter LLaMA-2 model.

2. Next, we create a paired dataset of {(co, 1)} samples, where
each base distribution sample, ¢g is sample from the LLM with
a prompt conditioned on the chemical formula of the
corresponding target sample, c;.

3. Finally, the RFM is trained using a flow matching objective on
this paired distribution.



Experiments

» We train our models on the MP-20 dataset (~ 40K materials).

» Key Metrics are Stability Rate (percentage of generated
structures that are stable) and SUN rate (percentage that are
stable, unique and nove).

Method Type Stability Rate(%)71 SUN Rate(%) 1
CDVAE Diffusion 1.57 -
DiffCSP Diffusion 5.06 3.34
FlowMM Flow Matching 4.65 2.34
CrystalLLM (70B) LLM 5.28 -
FlowLLM(Ours)
T =1.0,P=0.9 LLM + Flow Matching 10.07 4.89
T =0.7,P=1.0 LLM + Flow Matching 13.03 4.88
T=07,P=09 LLM + Flow Matching 17.82 4.92

FlowLLM significantly outperforms prior methods!



Thank you

Check out our poster, paper, and code!
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