
Maximizing utility in multi-agent
environments by anticipating the

behavior of other learners
Angelos Assos (MIT) Yuval Dagan (Tel Aviv) Costis Daskalakis (MIT)

Learning in repeated games
Agents in strategic environments have to make sequential decisions over a time horizon

Learning in repeated games
Agents in strategic environments have to make sequential decisions over a time horizon
Examples include

• Repeated Auctions

• Congestion games

• Network routing games

Etc.

Learning in repeated games
Agents in strategic environments have to make sequential decisions over a time horizon
Examples include

• Repeated Auctions

• Congestion games

• Network routing games

Etc.

Motivating question: Can strategic agents take advantage of these algorithms?

A lot of times agents use famous learning algorithms to determine what action to take.

• Two player, repeated, normal form game played
for time T.

• One player is called the learner and uses an
algorithm throughout the game.

• Other player is called optimizer, knows the
learner’s algorithm and tries to take advantage
of that to maximize their own utility.

• Optimizer and learner have and actions
from action spaces and and utility
matrices , respectively.

n m
𝒜 ℬ

A B

Setting

Game G =
(A,B)

Submit x(t)

Submit y(t)

Receive x(t)⊤By(t)

Receive x(t)⊤Ay(t)

• Two player, repeated, normal form game played
for time T.

• One player is called the learner and uses an
algorithm throughout the game.

• Other player is called optimizer, knows the
learner’s algorithm and tries to take advantage
of that to maximize their own utility.

• Optimizer and learner have and actions
from action spaces and and utility
matrices , respectively.

n m
𝒜 ℬ

A B

Against specific learning algorithms …

• In zero-sum games (where), what should
the optimizer do to maximize their own utility?

• In general-sum games (where), is the
best play for the optimizer efficiently computable?

A + B = 0

A + B ≠ 0

Setting

Questions we address

Game G =
(A,B)

Submit x(t)

Submit y(t)

Receive x(t)⊤By(t)

Receive x(t)⊤Ay(t)

Maximizing utility in zero-sum games

Optimizer strategy: any

Learner strategy:

, where:

a.k.a. replicator dynamics, the continuous time analog
of MWU.

x : [0,T] → Δ(𝒜)

y : [0,T] → Δ(ℬ)

yi(t) =
exp(η ∫ t

0
x(s)⊤Beids)

∑m
i=1 exp(η ∫ t

0
x(s)⊤Beids

Continuous time setting

Maximizing utility in zero-sum games

Optimizer strategy: any

Learner strategy:

, where:

a.k.a. replicator dynamics, the continuous time analog
of MWU.

x : [0,T] → Δ(𝒜)

y : [0,T] → Δ(ℬ)

yi(t) =
exp(η ∫ t

0
x(s)⊤Beids)

∑m
i=1 exp(η ∫ t

0
x(s)⊤Beids

Continuous time setting

Theorem 1: The rewards of the optimizer
depend only on the total time played
each action.

Maximizing utility in zero-sum games

Optimizer strategy: any

Learner strategy:

, where:

a.k.a. replicator dynamics, the continuous time analog
of MWU.

x : [0,T] → Δ(𝒜)

y : [0,T] → Δ(ℬ)

yi(t) =
exp(η ∫ t

0
x(s)⊤Beids)

∑m
i=1 exp(η ∫ t

0
x(s)⊤Beids

Continuous time setting

Theorem 1: The rewards of the optimizer
depend only on the total time played
each action.

Maximizing utility in zero-sum games
Continuous time setting

Theorem 1: The rewards of the optimizer
depend only on the total time played
each action.

Corollary 1: Optimal rewards can be
achieved by a constant strategy i.e.

Moreover, this strategy can be
efficiently computed in polynomial
time.

x(t) = x*, x* ∈ Δ(𝒜), ∀t ∈ [0,T]

Maximizing utility in zero-sum games
Discrete time setting

Optimizer strategy: any

Learner strategy:

, where:

a.k.a. MWU or Hedge.

x : {1,…, T} → Δ(𝒜)

y : {1,…, T} → Δ(ℬ)

yi(t) =
exp(η∑t−1

s=1 x(s)⊤Bei)

∑m
i=1 exp(η∑t−1

s=1 x(s)⊤Bei

Maximizing utility in zero-sum games
Discrete time setting

Optimizer strategy: any

Learner strategy:

, where:

a.k.a. MWU or Hedge.

x : {1,…, T} → Δ(𝒜)

y : {1,…, T} → Δ(ℬ)

yi(t) =
exp(η∑t−1

s=1 x(s)⊤Bei)

∑m
i=1 exp(η∑t−1

s=1 x(s)⊤Bei

Theorem 2: The following are true:

1.

2. There are classes of games for which

Rcont(A, − A, T) ≤ Rdisc(A, − A, T) ≤ Rcont(A, − A, T) +
ηT
2

Rdisc(A, − A, T) = Rcont(A, − A, T) + Ω(ηT)

: optimal rewards for the
optimizer in the continuous game.

: optimal rewards for the
optimizer in the discrete game.

Rcont(A, B, T)

Rdisc(A, B, T)

Computational Barrier in general-sum games
Learner is purely best responding to the history:

a.k.a. fictitious play or MWU with .

y(t) = arg maxy∈Δ(ℬ)

t−1

∑
s=1

x(s)⊤By

η → ∞

Computational Barrier in general-sum games
Learner is purely best responding to the history:

a.k.a. fictitious play or MWU with .

OCDP instance defined by :

• matrices and number of actions for learner
and optimizer respectively.

• total rounds of the game.

Instance is ‘YES’ if the optimizer can achieve total reward
more than and ‘NO’ otherwise.

y(t) = arg maxy∈Δ(ℬ)

t−1

∑
s=1

x(s)⊤By

η → ∞

(A, B, n, m, k, T)

A, B n, m

T

k

Computational Barrier in general-sum games
Theorem 2: OCDP is NP hard.

Proof sketch: Reduction from Hamiltonian Cycle.

Hamiltonian Cycle instance OCDP instance
T = k = |V | + 1

G = (V, E)

Summary
In short, our results:

1. In zero sum games, we show exactly how the
optimizer should play against a MWU learner.

2. In general sum games, we provide the first
known computational lower bound for
computing optimal strategies against a best
responding learner.

Summary
In short, our results:

1. In zero sum games, we show exactly how the
optimizer should play against a MWU learner.

2. In general sum games, we provide the first
known computational lower bound for
computing optimal strategies against a best
responding learner.

Thank you!

