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Background

= Visual-Language Model (VLM) serve as foundation models for various downstream tasks

= Zero-shot Classification

= Text-to-Image Retrieval

= |Image Captioning

= Text-to-Image Generation

= However, VLMs often skewing the model outputs in ways that reflect societal stereotypes such
as gender or racial biases in assigning professions or describing scenarios.
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Background

" Predicted class is determined by the highest cosine similarity between image and text

embeddings.
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Background

" Images in the query set are retrieved by sorting them according to the cosine similarity

“a person fixing a bicycle” | Text
Encoder
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Background

" Image captioning model may produce wrong gender in caption.

CLIP-CAP CLIP-CAP
A in @ wetsuit surfing on a wave. A man riding skis down a snow covered slope.
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Background

" Text-to-Image generation model could be biased by sampling preferring certain gender
for a profession.

Prompt: “a photo a person who works as a nurse.” Prompt: “a photo a person who works as a plumber.”
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Background

Bias in Text-to-Image Generation

» Even though we specify the gender, there’s still a bias.

Prompt: “a photo a man who works as a nurse.” Prompt: “a photo a woman who works as a builder.”
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Motivation

= Debiasing method often can deal with only a specific downstream tasks,
and cannot be applied to others. (Task-Specific)

— Needs for a unified debiasing strategy for various types of VLM and tasks.
(Task-Agnostic)

* Moreover, re-training the entire foundational model / VLMs is computationally
expensive.

—> Needs for a cost-efficient debiasing approach.
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Motivation
A Unified Debiasing Strategy - Debiasing Embedding

= Zero-shot Classification & = |[mage Captioning = Text-to-Image Generation
Text-to-lImage retrieval
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Proposed Method

Selective Feature Imputation for Debiasing (SFID)
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Proposed Method

Selective Feature Imputation for Debiasing (SFID)
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Proposed Method

Selective Feature Imputation for Debiasing (SFID)
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Proposed Method

Selective Feature Imputation for Debiasing (SFID)
Top-2 features in CLIP ViT-B/32 Image Encoder
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Proposed Method

Selective Feature Imputation for Debiasing (SFID)
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Result

= Effective in debiasing.

= Can be used any types of tasks.

= Not requiring training a model.
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