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Background

1 Adversarial samples are a serious risk to neural networks [Szegedy+ ICLR14]

Why can adversarial samples fool networks?
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[ 1 Empirical evidence: classifiers learning on mislabeled
adversarial samples can generalize to clean samples lllyas+ NeurlPS19]
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However, theoretical evidence and understanding are limited.
] How do adversarial perturbations contain class-specific features?
1 What is property of perturbation learning?
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Contributions

[ An adversarial perturbation can be represented as
the weighted sum of clean samples.

[ Network predictions are consistent when learning on
correctly labeled clean samples and mislabeled adversarial samples.
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Results

Framework (Lazy training)  If network width is sufficiently large, m > 0(d*(T; + T,)?),
most hidden neurons satisfy ¢'((w;(t), z) + b;(t)) = ¢’ ((w;(0), z) + b;(0)).
¢’ : Differential of ReLU

During training At initialization

We can directly follow the dynamics of network prediction during training.

Perturbation = the weighted sum of clean samples
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Predictions are consistent between standard and perturbation learning
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If the following conditions hold, then sgn(f(z)) = sgn(g(z)). Prediction matching

\ N 1 (1 df1 d 5
zZ)|>0(1+=]), G(2)| >0 =+—|=—+—=] |, sgnl(f(z))=-sgn(g(2))
/@) ( Tf) 9@)1>0| 7+ (Tg m) (f@) = sen(g(2)
(a) Functional margin (b) Functional margin (c) Agreement condition
condition 1 condition 2
MNIST
10.0 : 7 ~
sgn (£(2)) = sgn(3(2))
; ;7/ )
- y sgn (£(2)) = sgn(3(2))

A

— f(z) =0
----- gz) =0
O Positive samples

(a) Func. margin cond. 1  (b) Func. margin cond. 2
5.0 7

2.5 1

f(2),4(2) <0
(c) Agreement cond.

(d) Intersection 00 0 : B Negative samples



