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Contributions

* We provide thorough, empirically-validated theoretical
analysis of why GNNs perform better for high-degree nodes
on node classification tasks

e \We prove degree bias arises from variety of factors associated
with node's degree, e.g., homophily, neighbor diversity

e \We prove GNNSs reduce loss on low-degree nodes more
slowly
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Motivation

e Researchers have
proposed various
hypotheses for why
GNN degree bias

OCCUrS

e We find via a survey of
38 degree bias papers
that these hypotheses
are often not rigorously
validated, and can even
be contradictory

Hypothesis Papers

(H1) Neighborhoods of low-degree nodes | [115], [190], [193], [53], [219], [112], [113],
contain insufficient or overly noisy informa- | [118|, [116], [84], [110], [72], [109], [195],
tion for effective representations. [222], [174], |46], [31], [76], [220], [197]

(H2) High-degree nodes have a larger influ-
ence on GNN training because they have a
greater number of links with other nodes,

thereby dominating message passing.

[163], [190], [219], [87], [208], [108), [209)

(H3) High-degree nodes exert more influ-
ence on the representations of and predic-
tions for nodes as the number of GNN layers

increases.

[219], [29], [1086], [48], [210]

(H4) In semi-supervised learning, if training
nodes are picked randomly, test predictions
for high-degree nodes are more likely to be
influenced by these training nodes because
they have a greater number of links with

other nodes.

(H5) Representations of high-degree nodes
cluster more strongly around their corre-
sponding class centers, or are more likely to

be linearly separable.




Test-Time Degree Bias

Theorem 1. Consider a test node 1 with label Y; = ¢. Furthermore,
consider a label ¢’ # c. Let P (f(/% li,c) > (M |1, c’)) be the
probability of any model |.Z |misclassifying i. Then:

GNN, MLP, logistic regression, etc.
& (f(% ‘ i C) > Lﬂ(% | i C’)) < 1 , normalized measure of

dispersion often used
1 +[R, [ * |
In economics to
quantify inequality

where the squared inverse coefficient of variation
2
<[E 2 - Z.<L>]>
Rl c’ — .
= e ]

¢ logit for node i




Visualization:

Test-Time Degree Bias
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RW: Test-Time Degree Bias

Theorem 2. V] € [L],Vj € 7/, Var,.y
Then:

T. (I
" [x wc(,lc] <M.

Prediction homogeneity
L | g ’
(Zhfp)
Ri,c’ > 7 0 .
M(L+1)) o

Collision probability




RW:
[-hop Prediction Homogeneity

D — . — | E (D)
'Bi,c’_ ]Al./l/(l)(l)‘ x~@Yj AW,
Distribution over terminal Boundary that separates

nodes of length-/ random classes ¢ and c”.
walks starting from ¢ wgl .= W(lc) — W(lc)

High level: measures expected prediction score for
nodes J, weighted by probability of being reached by
length-/ random walk starting from i



RW:
[-hop Collision Probability
=y [(Pﬁw)ij]2

=4
e High level: quantifies probability of two length-/ random

walks starting from 1 colliding at same end node J

* When collision probability is lower, random walks are
more diverse



RW: Test-Time Degree Bias

 To make K; . larger (i.e., minimize probability of
misclassification), sufficient (although not necessary) that
IS larger

2
21L=o O‘i(l) “l.(” _ Z [(Pﬁwu

=

e Indicates more diverse and possibly informative L
-hop neighborhood
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RW: Test-Time Degree Bias

Cc —C

D _ T,
'Bi(,c)’_ e 0G) | Ereay, [x W ]

 To make R, . larger, it is sufficient that for all [ € [L], ,Bl.(lc),
IS more negative:

e e.g., when more nodes in [-hop neighborhood of i
are in class ¢ and were part of training set §
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Visualization:
Test-Time Degree Bias
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Visualization:
Training-Time Degree Bias
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SYM: Why do we care?

* As GNNs are applied to increasingly large networks, only few
epochs of training may be possible due to limited compute

* Which nodes receive superior utility from limited training?

* GNNs may serve as efficient lookup mechanism for nodes in
deployed systems

e |f partially-trained, can perform poorly for low-degree nodes



SYM:

Training-Time Degree Bias

Theorem 2. The change in loss for 1 after an arbitrary

training step 1 obeys:

1t + 11GYM i, c) — £[AEYM|i,0)| < C[1)

L
D;; 2 H‘ 7Vl

Expected similarity between neighbors of node i

and nodes in training batch B|1]

Vm € Blt], ()?gl)[t]) = Dmm[EjN/V<l>(i),k~/V<l>(m)

m

I,



SYM:
Training-Time Degree Bias

 Change in loss for 1 after arbitrary training step has
smaller magnitude if 7 is low-degree

* Loss for 1 changes more slowly when features of nodes in

its L.-hop neighborhood are not similar to the features in L
-hop neighborhoods of nodes in training batch



SYM:
Training-Time Degree Bias
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Principled Roadmap:
Theoretically-Informed Criteria

 Maximizing inverse collision probability of low-degree
nodes

e Increasing L-hop prediction homogeneity of low-
degree nodes

 Minimizing distributional differences in representations
of low and high-degree nodes

 Reducing training discrepancies with regards to rate at
which GNNs learn for low vs. high-degree nodes



Conclusion

 Contributions:
e Unify and distill hypotheses for origins of GNN degree bias

* Prove degree bias arises from homophily, diversity, etc. of
neighbors

* Prove during training, some GNNs may adjust loss on low-
degree nodes more slowly

Thank you!



