
Differentiable Task Graph Learning:
Procedural Activity Representation
and Online Mistake Detection from

Egocentric Videos
Luigi Seminara, Giovanni Maria Farinella, Antonino Furnari

University of Catania | Department of
Mathematics and Computer Science

Procedure Understanding

10/11/24 Luigi Seminara 2

Bike Repair Cooking Health

Add Salt

Procedure Understanding

10/11/24 Luigi Seminara 3

• Jang, Youngkyoon, et al. "Epic-tent: An egocentric video dataset for camping tent assembly." Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 2019.

Procedure: Assemble a tent

Key-steps:

Task Graph

10/11/24 Luigi Seminara 4

• Peddi, Rohith, et al. "CaptainCook4D: A dataset for understanding errors in procedural activities." arXiv preprint arXiv:2312.14556 (2023).
• Grauman, Kristen, et al. "Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Task Graph Maximum Likelihood (TGML)

We can estimate the probability of observing key-step 𝐾! given the set of observed
key-steps 𝐾" and the constraints imposed by 𝑍̅, following Laplace’s classic definition of
probability:

10/11/24 Luigi Seminara 5

3 Technical Approach

3.1 Task Graph Maximum Likelihood Learning Framework

Preliminaries Let K = {K0 = S,K1, . . . ,Kn,Kn+1 = E} be the set of key-steps involved in the
procedure, where S and E are placeholder “start” and “end” key-steps denoting the start and end
of the procedure. We define the task graph as a directed acyclic graph, i.e., a tuple G = (K,A,!),
where K is the set of nodes (the key-steps), A = K⇥K is the set of possible directed edges indicating
ordering constraints between pairs of key-steps, and ! : A ! [0, 1] is a function assigning a score
to each of the edges in A. An edge (Ki,Kj) 2 A (also denoted as Ki ! Kj) indicates that
Kj is a pre-condition of Ki (for instance mix ! crack egg) with score !(Ki,Kj). We assume
normalized weights for outgoing edges, i.e.,

P
j w(Ki,Kj) = 18i. We also represent the graph

G as the adjacency matrix Z 2 [0, 1]n⇥n, where Zij = !(Ki,Kj). For ease of notation, we will
denote the graph G = (K,A,!) simply with its adjacency matrix Z in the rest of the paper. We
assume that a set of N sequences Y = {y(k)}Nk=1 showing possible orderings of the key-steps K
is available, where the generic sequence y 2 Y is defined as a set of indexes to key-steps K, i.e.,
y =< y0, . . . , yt, . . . , ym+1 >, with yt 2 {0, . . . , n + 1}. We further assume that each sequence
starts with key-step S and ends with key-step E, i.e., y0 = 0 and ym+1 = n + 11 and note that
different sequences y(i) and y(j) have in general different lengths. Since we are interested in modeling
key-step orderings, we assume that sequences do not contain repetitions.2. We frame task graph
learning as determining an adjacency matrix Ẑ such that sequences in Y can be seen as topological
sorts of Ẑ. A principled way to approach this problem is to provide an estimate of the likelihood
P (Y|Z) and choose the maximum likelihood estimate Ẑ = argmax

Z
P (Y|Z).

Modeling Sequence Likelihood for an Unweighted Graph Let us consider the special case of an
unweighted graph, i.e., Z̄ 2 {0, 1}n⇥n. We wish to estimate P (y|Z), the likelihood of the generic
sequence y 2 Y given graph Z. Formally, let Yt be the random variable related to the event “key-step
Kyt appears at position t in sequence y”. We can factorize the conditional probability P (y|Z) as:

P (y|Z) = P (Y0, . . . , Y|y||Z) = P (Y0|Z) · P (Y1|Y0, Z) · . . . · P (Y|y||Y0, . . . , Y|y|�1, Z). (1)

We assume that the probability of observing a given key-step Kyt at position t in y depends on the
previously observed key-steps (Kyt�1 , . . . ,Ky0), but not on their ordering, i.e., the probability of
observing a given key-step depends on whether its pre-conditions are satisfied, regardless of the order
in which they have been satisfied. Under this assumption, we write P (Yt|Yt�1, . . . , Y0, Z) simply
as P (Kyt |Kyt�1 , . . . ,Ky0 , Z). Without loss of generality, in the following, we denote the current
key-step as Ki = Kyt , the indexes of key-steps observed at time t as J = O(y, t) = {yt�1, . . . , y0},
and the corresponding set of observed key-steps as KJ = {Ki|i 2 J }. Similarly, we define
J̄ = O(y, t) = {0, . . . , n + 1} \ O(y, t) and KJ̄ as the sets of indexes and corresponding key-
steps unobserved at position t, i.e., those which do not appear before yt in the sequence. Given the
factorization above, we are hence interested in estimating the general term P (Kyt |Kyt�1 , . . . ,Ky0) =
P (Ki|KJ). We can estimate the probability of observing key-step Ki given the set of observed key-
steps KJ and the constraints imposed by Z̄, following Laplace’s classic definition of probability [23]
as “the ratio of the number of favorable cases to the number of possible cases”. Specifically, if we
were to randomly sample a key-step from K following the constraints of Z̄, and having observed
key-steps KJ , sampling Ki would be a favorable case if all pre-conditions of Ki were satisfied, i.e.,
if
P

j2J̄
Zij = 0 (there are no pre-conditions in unobserved key-steps KJ̄). Similarly, sampling

a key-steps Kh is a “possible case” if
P

j2J̄
Zhj = 0. We can hence define the probability of

observing key-step Ki after observing all key-steps KJ in a sequence as follows:

P (Ki|KJ , Z̄) =
number of favorable cases
number of possible cases

=
1(

P
j2J̄

Z̄ij = 0)
P

h2J̄
1(
P

j2J̄
Z̄hj = 0)

(2)

where 1(·) denotes the indicator function, and in the denominator, we are counting the number of
key-steps that have not appeared yet are “possible cases” under the given graph Z. Likelihood P (y|Z)
can be obtained by plugging Eq. (2) into Eq. (1).

1In practice, we prepend/append S and E to each sequence.
2Since sequences may in practice contain repetitions, we map each sequence containing repetitions to

multiple sequences with no repetitions (e.g., ABCAD ! (ABCD,BCAD)).

4

Task Graph Maximum Likelihood (TGML)

10/11/24 Luigi Seminara 6

3 Technical Approach

3.1 Task Graph Maximum Likelihood Learning Framework

Preliminaries Let K = {K0 = S,K1, . . . ,Kn,Kn+1 = E} be the set of key-steps involved in the
procedure, where S and E are placeholder “start” and “end” key-steps denoting the start and end
of the procedure. We define the task graph as a directed acyclic graph, i.e., a tuple G = (K,A,!),
where K is the set of nodes (the key-steps), A = K⇥K is the set of possible directed edges indicating
ordering constraints between pairs of key-steps, and ! : A ! [0, 1] is a function assigning a score
to each of the edges in A. An edge (Ki,Kj) 2 A (also denoted as Ki ! Kj) indicates that
Kj is a pre-condition of Ki (for instance mix ! crack egg) with score !(Ki,Kj). We assume
normalized weights for outgoing edges, i.e.,

P
j w(Ki,Kj) = 18i. We also represent the graph

G as the adjacency matrix Z 2 [0, 1]n⇥n, where Zij = !(Ki,Kj). For ease of notation, we will
denote the graph G = (K,A,!) simply with its adjacency matrix Z in the rest of the paper. We
assume that a set of N sequences Y = {y(k)}Nk=1 showing possible orderings of the key-steps K
is available, where the generic sequence y 2 Y is defined as a set of indexes to key-steps K, i.e.,
y =< y0, . . . , yt, . . . , ym+1 >, with yt 2 {0, . . . , n + 1}. We further assume that each sequence
starts with key-step S and ends with key-step E, i.e., y0 = 0 and ym+1 = n + 11 and note that
different sequences y(i) and y(j) have in general different lengths. Since we are interested in modeling
key-step orderings, we assume that sequences do not contain repetitions.2. We frame task graph
learning as determining an adjacency matrix Ẑ such that sequences in Y can be seen as topological
sorts of Ẑ. A principled way to approach this problem is to provide an estimate of the likelihood
P (Y|Z) and choose the maximum likelihood estimate Ẑ = argmax

Z
P (Y|Z).

Modeling Sequence Likelihood for an Unweighted Graph Let us consider the special case of an
unweighted graph, i.e., Z̄ 2 {0, 1}n⇥n. We wish to estimate P (y|Z), the likelihood of the generic
sequence y 2 Y given graph Z. Formally, let Yt be the random variable related to the event “key-step
Kyt appears at position t in sequence y”. We can factorize the conditional probability P (y|Z) as:

P (y|Z) = P (Y0, . . . , Y|y||Z) = P (Y0|Z) · P (Y1|Y0, Z) · . . . · P (Y|y||Y0, . . . , Y|y|�1, Z). (1)

We assume that the probability of observing a given key-step Kyt at position t in y depends on the
previously observed key-steps (Kyt�1 , . . . ,Ky0), but not on their ordering, i.e., the probability of
observing a given key-step depends on whether its pre-conditions are satisfied, regardless of the order
in which they have been satisfied. Under this assumption, we write P (Yt|Yt�1, . . . , Y0, Z) simply
as P (Kyt |Kyt�1 , . . . ,Ky0 , Z). Without loss of generality, in the following, we denote the current
key-step as Ki = Kyt , the indexes of key-steps observed at time t as J = O(y, t) = {yt�1, . . . , y0},
and the corresponding set of observed key-steps as KJ = {Ki|i 2 J }. Similarly, we define
J̄ = O(y, t) = {0, . . . , n + 1} \ O(y, t) and KJ̄ as the sets of indexes and corresponding key-
steps unobserved at position t, i.e., those which do not appear before yt in the sequence. Given the
factorization above, we are hence interested in estimating the general term P (Kyt |Kyt�1 , . . . ,Ky0) =
P (Ki|KJ). We can estimate the probability of observing key-step Ki given the set of observed key-
steps KJ and the constraints imposed by Z̄, following Laplace’s classic definition of probability [23]
as “the ratio of the number of favorable cases to the number of possible cases”. Specifically, if we
were to randomly sample a key-step from K following the constraints of Z̄, and having observed
key-steps KJ , sampling Ki would be a favorable case if all pre-conditions of Ki were satisfied, i.e.,
if
P

j2J̄
Zij = 0 (there are no pre-conditions in unobserved key-steps KJ̄). Similarly, sampling

a key-steps Kh is a “possible case” if
P

j2J̄
Zhj = 0. We can hence define the probability of

observing key-step Ki after observing all key-steps KJ in a sequence as follows:

P (Ki|KJ , Z̄) =
number of favorable cases
number of possible cases

=
1(

P
j2J̄

Z̄ij = 0)
P

h2J̄
1(
P

j2J̄
Z̄hj = 0)

(2)

where 1(·) denotes the indicator function, and in the denominator, we are counting the number of
key-steps that have not appeared yet are “possible cases” under the given graph Z. Likelihood P (y|Z)
can be obtained by plugging Eq. (2) into Eq. (1).

1In practice, we prepend/append S and E to each sequence.
2Since sequences may in practice contain repetitions, we map each sequence containing repetitions to

multiple sequences with no repetitions (e.g., ABCAD ! (ABCD,BCAD)).

4

𝑃 𝑆 𝑍̅ = 1

Task Graph Maximum Likelihood (TGML)

10/11/24 Luigi Seminara 7

3 Technical Approach

3.1 Task Graph Maximum Likelihood Learning Framework

Preliminaries Let K = {K0 = S,K1, . . . ,Kn,Kn+1 = E} be the set of key-steps involved in the
procedure, where S and E are placeholder “start” and “end” key-steps denoting the start and end
of the procedure. We define the task graph as a directed acyclic graph, i.e., a tuple G = (K,A,!),
where K is the set of nodes (the key-steps), A = K⇥K is the set of possible directed edges indicating
ordering constraints between pairs of key-steps, and ! : A ! [0, 1] is a function assigning a score
to each of the edges in A. An edge (Ki,Kj) 2 A (also denoted as Ki ! Kj) indicates that
Kj is a pre-condition of Ki (for instance mix ! crack egg) with score !(Ki,Kj). We assume
normalized weights for outgoing edges, i.e.,

P
j w(Ki,Kj) = 18i. We also represent the graph

G as the adjacency matrix Z 2 [0, 1]n⇥n, where Zij = !(Ki,Kj). For ease of notation, we will
denote the graph G = (K,A,!) simply with its adjacency matrix Z in the rest of the paper. We
assume that a set of N sequences Y = {y(k)}Nk=1 showing possible orderings of the key-steps K
is available, where the generic sequence y 2 Y is defined as a set of indexes to key-steps K, i.e.,
y =< y0, . . . , yt, . . . , ym+1 >, with yt 2 {0, . . . , n + 1}. We further assume that each sequence
starts with key-step S and ends with key-step E, i.e., y0 = 0 and ym+1 = n + 11 and note that
different sequences y(i) and y(j) have in general different lengths. Since we are interested in modeling
key-step orderings, we assume that sequences do not contain repetitions.2. We frame task graph
learning as determining an adjacency matrix Ẑ such that sequences in Y can be seen as topological
sorts of Ẑ. A principled way to approach this problem is to provide an estimate of the likelihood
P (Y|Z) and choose the maximum likelihood estimate Ẑ = argmax

Z
P (Y|Z).

Modeling Sequence Likelihood for an Unweighted Graph Let us consider the special case of an
unweighted graph, i.e., Z̄ 2 {0, 1}n⇥n. We wish to estimate P (y|Z), the likelihood of the generic
sequence y 2 Y given graph Z. Formally, let Yt be the random variable related to the event “key-step
Kyt appears at position t in sequence y”. We can factorize the conditional probability P (y|Z) as:

P (y|Z) = P (Y0, . . . , Y|y||Z) = P (Y0|Z) · P (Y1|Y0, Z) · . . . · P (Y|y||Y0, . . . , Y|y|�1, Z). (1)

We assume that the probability of observing a given key-step Kyt at position t in y depends on the
previously observed key-steps (Kyt�1 , . . . ,Ky0), but not on their ordering, i.e., the probability of
observing a given key-step depends on whether its pre-conditions are satisfied, regardless of the order
in which they have been satisfied. Under this assumption, we write P (Yt|Yt�1, . . . , Y0, Z) simply
as P (Kyt |Kyt�1 , . . . ,Ky0 , Z). Without loss of generality, in the following, we denote the current
key-step as Ki = Kyt , the indexes of key-steps observed at time t as J = O(y, t) = {yt�1, . . . , y0},
and the corresponding set of observed key-steps as KJ = {Ki|i 2 J }. Similarly, we define
J̄ = O(y, t) = {0, . . . , n + 1} \ O(y, t) and KJ̄ as the sets of indexes and corresponding key-
steps unobserved at position t, i.e., those which do not appear before yt in the sequence. Given the
factorization above, we are hence interested in estimating the general term P (Kyt |Kyt�1 , . . . ,Ky0) =
P (Ki|KJ). We can estimate the probability of observing key-step Ki given the set of observed key-
steps KJ and the constraints imposed by Z̄, following Laplace’s classic definition of probability [23]
as “the ratio of the number of favorable cases to the number of possible cases”. Specifically, if we
were to randomly sample a key-step from K following the constraints of Z̄, and having observed
key-steps KJ , sampling Ki would be a favorable case if all pre-conditions of Ki were satisfied, i.e.,
if
P

j2J̄
Zij = 0 (there are no pre-conditions in unobserved key-steps KJ̄). Similarly, sampling

a key-steps Kh is a “possible case” if
P

j2J̄
Zhj = 0. We can hence define the probability of

observing key-step Ki after observing all key-steps KJ in a sequence as follows:

P (Ki|KJ , Z̄) =
number of favorable cases
number of possible cases

=
1(

P
j2J̄

Z̄ij = 0)
P

h2J̄
1(
P

j2J̄
Z̄hj = 0)

(2)

where 1(·) denotes the indicator function, and in the denominator, we are counting the number of
key-steps that have not appeared yet are “possible cases” under the given graph Z. Likelihood P (y|Z)
can be obtained by plugging Eq. (2) into Eq. (1).

1In practice, we prepend/append S and E to each sequence.
2Since sequences may in practice contain repetitions, we map each sequence containing repetitions to

multiple sequences with no repetitions (e.g., ABCAD ! (ABCD,BCAD)).

4

𝑃 𝐴 𝑆, 𝑍̅

𝑃 𝐴 𝑆, 𝑍̅ = 1

1 + 1 + 0
= 0.5

Task Graph Maximum Likelihood (TGML)

10/11/24 Luigi Seminara 8

3 Technical Approach

3.1 Task Graph Maximum Likelihood Learning Framework

Preliminaries Let K = {K0 = S,K1, . . . ,Kn,Kn+1 = E} be the set of key-steps involved in the
procedure, where S and E are placeholder “start” and “end” key-steps denoting the start and end
of the procedure. We define the task graph as a directed acyclic graph, i.e., a tuple G = (K,A,!),
where K is the set of nodes (the key-steps), A = K⇥K is the set of possible directed edges indicating
ordering constraints between pairs of key-steps, and ! : A ! [0, 1] is a function assigning a score
to each of the edges in A. An edge (Ki,Kj) 2 A (also denoted as Ki ! Kj) indicates that
Kj is a pre-condition of Ki (for instance mix ! crack egg) with score !(Ki,Kj). We assume
normalized weights for outgoing edges, i.e.,

P
j w(Ki,Kj) = 18i. We also represent the graph

G as the adjacency matrix Z 2 [0, 1]n⇥n, where Zij = !(Ki,Kj). For ease of notation, we will
denote the graph G = (K,A,!) simply with its adjacency matrix Z in the rest of the paper. We
assume that a set of N sequences Y = {y(k)}Nk=1 showing possible orderings of the key-steps K
is available, where the generic sequence y 2 Y is defined as a set of indexes to key-steps K, i.e.,
y =< y0, . . . , yt, . . . , ym+1 >, with yt 2 {0, . . . , n + 1}. We further assume that each sequence
starts with key-step S and ends with key-step E, i.e., y0 = 0 and ym+1 = n + 11 and note that
different sequences y(i) and y(j) have in general different lengths. Since we are interested in modeling
key-step orderings, we assume that sequences do not contain repetitions.2. We frame task graph
learning as determining an adjacency matrix Ẑ such that sequences in Y can be seen as topological
sorts of Ẑ. A principled way to approach this problem is to provide an estimate of the likelihood
P (Y|Z) and choose the maximum likelihood estimate Ẑ = argmax

Z
P (Y|Z).

Modeling Sequence Likelihood for an Unweighted Graph Let us consider the special case of an
unweighted graph, i.e., Z̄ 2 {0, 1}n⇥n. We wish to estimate P (y|Z), the likelihood of the generic
sequence y 2 Y given graph Z. Formally, let Yt be the random variable related to the event “key-step
Kyt appears at position t in sequence y”. We can factorize the conditional probability P (y|Z) as:

P (y|Z) = P (Y0, . . . , Y|y||Z) = P (Y0|Z) · P (Y1|Y0, Z) · . . . · P (Y|y||Y0, . . . , Y|y|�1, Z). (1)

We assume that the probability of observing a given key-step Kyt at position t in y depends on the
previously observed key-steps (Kyt�1 , . . . ,Ky0), but not on their ordering, i.e., the probability of
observing a given key-step depends on whether its pre-conditions are satisfied, regardless of the order
in which they have been satisfied. Under this assumption, we write P (Yt|Yt�1, . . . , Y0, Z) simply
as P (Kyt |Kyt�1 , . . . ,Ky0 , Z). Without loss of generality, in the following, we denote the current
key-step as Ki = Kyt , the indexes of key-steps observed at time t as J = O(y, t) = {yt�1, . . . , y0},
and the corresponding set of observed key-steps as KJ = {Ki|i 2 J }. Similarly, we define
J̄ = O(y, t) = {0, . . . , n + 1} \ O(y, t) and KJ̄ as the sets of indexes and corresponding key-
steps unobserved at position t, i.e., those which do not appear before yt in the sequence. Given the
factorization above, we are hence interested in estimating the general term P (Kyt |Kyt�1 , . . . ,Ky0) =
P (Ki|KJ). We can estimate the probability of observing key-step Ki given the set of observed key-
steps KJ and the constraints imposed by Z̄, following Laplace’s classic definition of probability [23]
as “the ratio of the number of favorable cases to the number of possible cases”. Specifically, if we
were to randomly sample a key-step from K following the constraints of Z̄, and having observed
key-steps KJ , sampling Ki would be a favorable case if all pre-conditions of Ki were satisfied, i.e.,
if
P

j2J̄
Zij = 0 (there are no pre-conditions in unobserved key-steps KJ̄). Similarly, sampling

a key-steps Kh is a “possible case” if
P

j2J̄
Zhj = 0. We can hence define the probability of

observing key-step Ki after observing all key-steps KJ in a sequence as follows:

P (Ki|KJ , Z̄) =
number of favorable cases
number of possible cases

=
1(

P
j2J̄

Z̄ij = 0)
P

h2J̄
1(
P

j2J̄
Z̄hj = 0)

(2)

where 1(·) denotes the indicator function, and in the denominator, we are counting the number of
key-steps that have not appeared yet are “possible cases” under the given graph Z. Likelihood P (y|Z)
can be obtained by plugging Eq. (2) into Eq. (1).

1In practice, we prepend/append S and E to each sequence.
2Since sequences may in practice contain repetitions, we map each sequence containing repetitions to

multiple sequences with no repetitions (e.g., ABCAD ! (ABCD,BCAD)).

4

𝑃 𝐵 𝑆, 𝐴, 𝑍̅

𝑃 𝐵 𝑆, 𝐴, 𝑍̅ = 1

1 + 0
= 1

Task Graph Maximum Likelihood (TGML)

10/11/24 Luigi Seminara 9

3 Technical Approach

3.1 Task Graph Maximum Likelihood Learning Framework

Preliminaries Let K = {K0 = S,K1, . . . ,Kn,Kn+1 = E} be the set of key-steps involved in the
procedure, where S and E are placeholder “start” and “end” key-steps denoting the start and end
of the procedure. We define the task graph as a directed acyclic graph, i.e., a tuple G = (K,A,!),
where K is the set of nodes (the key-steps), A = K⇥K is the set of possible directed edges indicating
ordering constraints between pairs of key-steps, and ! : A ! [0, 1] is a function assigning a score
to each of the edges in A. An edge (Ki,Kj) 2 A (also denoted as Ki ! Kj) indicates that
Kj is a pre-condition of Ki (for instance mix ! crack egg) with score !(Ki,Kj). We assume
normalized weights for outgoing edges, i.e.,

P
j w(Ki,Kj) = 18i. We also represent the graph

G as the adjacency matrix Z 2 [0, 1]n⇥n, where Zij = !(Ki,Kj). For ease of notation, we will
denote the graph G = (K,A,!) simply with its adjacency matrix Z in the rest of the paper. We
assume that a set of N sequences Y = {y(k)}Nk=1 showing possible orderings of the key-steps K
is available, where the generic sequence y 2 Y is defined as a set of indexes to key-steps K, i.e.,
y =< y0, . . . , yt, . . . , ym+1 >, with yt 2 {0, . . . , n + 1}. We further assume that each sequence
starts with key-step S and ends with key-step E, i.e., y0 = 0 and ym+1 = n + 11 and note that
different sequences y(i) and y(j) have in general different lengths. Since we are interested in modeling
key-step orderings, we assume that sequences do not contain repetitions.2. We frame task graph
learning as determining an adjacency matrix Ẑ such that sequences in Y can be seen as topological
sorts of Ẑ. A principled way to approach this problem is to provide an estimate of the likelihood
P (Y|Z) and choose the maximum likelihood estimate Ẑ = argmax

Z
P (Y|Z).

Modeling Sequence Likelihood for an Unweighted Graph Let us consider the special case of an
unweighted graph, i.e., Z̄ 2 {0, 1}n⇥n. We wish to estimate P (y|Z), the likelihood of the generic
sequence y 2 Y given graph Z. Formally, let Yt be the random variable related to the event “key-step
Kyt appears at position t in sequence y”. We can factorize the conditional probability P (y|Z) as:

P (y|Z) = P (Y0, . . . , Y|y||Z) = P (Y0|Z) · P (Y1|Y0, Z) · . . . · P (Y|y||Y0, . . . , Y|y|�1, Z). (1)

We assume that the probability of observing a given key-step Kyt at position t in y depends on the
previously observed key-steps (Kyt�1 , . . . ,Ky0), but not on their ordering, i.e., the probability of
observing a given key-step depends on whether its pre-conditions are satisfied, regardless of the order
in which they have been satisfied. Under this assumption, we write P (Yt|Yt�1, . . . , Y0, Z) simply
as P (Kyt |Kyt�1 , . . . ,Ky0 , Z). Without loss of generality, in the following, we denote the current
key-step as Ki = Kyt , the indexes of key-steps observed at time t as J = O(y, t) = {yt�1, . . . , y0},
and the corresponding set of observed key-steps as KJ = {Ki|i 2 J }. Similarly, we define
J̄ = O(y, t) = {0, . . . , n + 1} \ O(y, t) and KJ̄ as the sets of indexes and corresponding key-
steps unobserved at position t, i.e., those which do not appear before yt in the sequence. Given the
factorization above, we are hence interested in estimating the general term P (Kyt |Kyt�1 , . . . ,Ky0) =
P (Ki|KJ). We can estimate the probability of observing key-step Ki given the set of observed key-
steps KJ and the constraints imposed by Z̄, following Laplace’s classic definition of probability [23]
as “the ratio of the number of favorable cases to the number of possible cases”. Specifically, if we
were to randomly sample a key-step from K following the constraints of Z̄, and having observed
key-steps KJ , sampling Ki would be a favorable case if all pre-conditions of Ki were satisfied, i.e.,
if
P

j2J̄
Zij = 0 (there are no pre-conditions in unobserved key-steps KJ̄). Similarly, sampling

a key-steps Kh is a “possible case” if
P

j2J̄
Zhj = 0. We can hence define the probability of

observing key-step Ki after observing all key-steps KJ in a sequence as follows:

P (Ki|KJ , Z̄) =
number of favorable cases
number of possible cases

=
1(

P
j2J̄

Z̄ij = 0)
P

h2J̄
1(
P

j2J̄
Z̄hj = 0)

(2)

where 1(·) denotes the indicator function, and in the denominator, we are counting the number of
key-steps that have not appeared yet are “possible cases” under the given graph Z. Likelihood P (y|Z)
can be obtained by plugging Eq. (2) into Eq. (1).

1In practice, we prepend/append S and E to each sequence.
2Since sequences may in practice contain repetitions, we map each sequence containing repetitions to

multiple sequences with no repetitions (e.g., ABCAD ! (ABCD,BCAD)).

4

𝑃 𝐸 𝑆, 𝐴, 𝐵, 𝑍̅

𝑃 𝐸 𝑆, 𝐴, 𝐵, 𝑍̅ = 1
1

= 1

𝑃 < 𝑆, 𝐴, 𝐵, 𝐸 > 𝑍̅) =
= 1 ⋅ 0.5 ⋅ 1 ⋅ 1 = 0.5

Task Graph Maximum Likelihood (TGML)

10/11/24 Luigi Seminara 10

A

D

B C

S

E

Graph Adjacency Matrix

Observed
Key-steps

0.1

0.55

0.95

Feasibility

 =

Goal: Estimate

Observed sequence
A B CDS E

A B CDS E

Observed Future

Example: estimate

0.7 0 0.10.1

0.05 0.45 0.40

0.7 0.2 00.05

A

A B

B

C

C

D

D

0.1

0.1

0.05

0.05 0.1 0.350.4 0

0 0.05 0.050.05 0.85

S

E

0 0 00 0

0

0

0

0

0

0

E

S

Figure 2: Given a sequence < S,A,B,D,C,E >, and a graph G with adjacency matrix Z, our
goal is to estimate the likelihood P (< S,A,B,D,C,E > |Z), which can be done by factorizing
the expression into simpler terms. The figure shows an example of computation of probability
P (D|S,A,B,Z) as the ratio of the “feasibility of sampling key-step D, having observed key-steps S,
A, and B” to the sum of all feasibility scores for unobserved symbols. Feasibility values are computed
by summing weights of edges D → X for all observed key-steps X .

Modeling Sequence Likelihood for a Weighted Graph To enable gradient-based learning, we
consider the general case of a continuous adjacency matrix Z ↑ [0, 1](n+2)→(n+2). We generalize
the concept of “possible cases” discussed in the previous section with the concept of “feasibility of
sampling a given key-step Ki, having observed a set of key-steps KJ , given graph Z”, which we
define as the sum of all weights of edges between observed key-steps KJ and Ki: f(Ki|KJ , Z) =∑

j↑J
Zij . Intuitively, if key-step ki has many satisfied pre-conditions, we are more likely to sample

it as the next key-step. We hence define P (Ki|KJ , Z) as “the ratio of the feasibility of sampling Ki

to the sum of the feasibilities of sampling any unobserved key-step”:

P (Ki|KJ , Z) =
f(Ki|KJ , Z)∑

h↑J̄
f(Kh|KJ , Z)

=

∑
j↑J

Zij∑
h↑J̄

∑
j↑J

Zhj
(3)

Figure 2 illustrates the computation of the likelihood in Eq. (3). Plugging Eq. (3) into Eq. (1), we can
estimate the likelihood of a sequence y given graph Z as:

P (y|Z) = P (S|Z)

|y|∏

t=1

P (Kyt |KO(y,t), Z) =

|y|∏

t=1

∑
j↑O(y,t) Zytj∑

h↑O(y,t)

∑
j↑O(y,t) Zhj

. (4)

Where we set P (Ky0 |Z) = P (S|Z) = 1 as sequences always start with the start node S.

Task Graph Maximum Likelihood Loss Function Assuming that sequences y(i) ↑ Y are indepen-
dent and identically distributed, we define the likelihood of Y given graph Z as follows:

P (Y|Z) =

|Y|∏

k=1

P (y(k)|Z) =

|Y|∏

k=1

|y(k)
|∏

t=1

∑
j↑O(y(k),t) Zytj∑

h↑O(y(k),t)

∑
j↑O(y(k),t) Zhj

. (5)

We can find the optimal graph Z by maximizing the likelihood in Eq. (5), which is equivalent to
minimizing the negative log-likelihood ↓ logP (Y, Z), leading to formulating the following loss:

L(Y, Z) = ↓

|Y |∑

k=1

|y(k)
|∑

t=1

(
log

∑

j↑O(y(k),t)

Zytj ↓ ω · log
∑

h↑O(y(k),t)

j↑O(y(k),t)

Zhj

)
(6)

where ω is a hyper-parameter. We refer to Eq. (6) as the Task Graph Maximum Likelihood (TGML)
loss function. Since Eq. (6) is differentiable with respect to all Zij values, we can learn the
adjacency matrix Z by minimizing the loss with gradient descent to find the estimated graph
Ẑ = argZ maxL(Y, Z). Eq. (6) works as a contrastive loss in which the first logarithmic term aims

5

A

D

B C

S

E

Graph Adjacency Matrix

Observed
Key-steps

0.1

0.55

0.95

Feasibility

 =

Goal: Estimate

Observed sequence
A B CDS E

A B CDS E

Observed Future

Example: estimate

0.7 0 0.10.1

0.05 0.45 0.40

0.7 0.2 00.05

A

A B

B

C

C

D

D

0.1

0.1

0.05

0.05 0.1 0.350.4 0

0 0.05 0.050.05 0.85

S

E

0 0 00 0

0

0

0

0

0

0

E

S

Figure 2: Given a sequence < S,A,B,D,C,E >, and a graph G with adjacency matrix Z, our
goal is to estimate the likelihood P (< S,A,B,D,C,E > |Z), which can be done by factorizing
the expression into simpler terms. The figure shows an example of computation of probability
P (D|S,A,B,Z) as the ratio of the “feasibility of sampling key-step D, having observed key-steps S,
A, and B” to the sum of all feasibility scores for unobserved symbols. Feasibility values are computed
by summing weights of edges D → X for all observed key-steps X .

Modeling Sequence Likelihood for a Weighted Graph To enable gradient-based learning, we
consider the general case of a continuous adjacency matrix Z ↑ [0, 1](n+2)→(n+2). We generalize
the concept of “possible cases” discussed in the previous section with the concept of “feasibility of
sampling a given key-step Ki, having observed a set of key-steps KJ , given graph Z”, which we
define as the sum of all weights of edges between observed key-steps KJ and Ki: f(Ki|KJ , Z) =∑

j↑J
Zij . Intuitively, if key-step ki has many satisfied pre-conditions, we are more likely to sample

it as the next key-step. We hence define P (Ki|KJ , Z) as “the ratio of the feasibility of sampling Ki

to the sum of the feasibilities of sampling any unobserved key-step”:

P (Ki|KJ , Z) =
f(Ki|KJ , Z)∑

h↑J̄
f(Kh|KJ , Z)

=

∑
j↑J

Zij∑
h↑J̄

∑
j↑J

Zhj
(3)

Figure 2 illustrates the computation of the likelihood in Eq. (3). Plugging Eq. (3) into Eq. (1), we can
estimate the likelihood of a sequence y given graph Z as:

P (y|Z) = P (S|Z)

|y|∏

t=1

P (Kyt |KO(y,t), Z) =

|y|∏

t=1

∑
j↑O(y,t) Zytj∑

h↑O(y,t)

∑
j↑O(y,t) Zhj

. (4)

Where we set P (Ky0 |Z) = P (S|Z) = 1 as sequences always start with the start node S.

Task Graph Maximum Likelihood Loss Function Assuming that sequences y(i) ↑ Y are indepen-
dent and identically distributed, we define the likelihood of Y given graph Z as follows:

P (Y|Z) =

|Y|∏

k=1

P (y(k)|Z) =

|Y|∏

k=1

|y(k)
|∏

t=1

∑
j↑O(y(k),t) Zytj∑

h↑O(y(k),t)

∑
j↑O(y(k),t) Zhj

. (5)

We can find the optimal graph Z by maximizing the likelihood in Eq. (5), which is equivalent to
minimizing the negative log-likelihood ↓ logP (Y, Z), leading to formulating the following loss:

L(Y, Z) = ↓

|Y |∑

k=1

|y(k)
|∑

t=1

(
log

∑

j↑O(y(k),t)

Zytj ↓ ω · log
∑

h↑O(y(k),t)

j↑O(y(k),t)

Zhj

)
(6)

where ω is a hyper-parameter. We refer to Eq. (6) as the Task Graph Maximum Likelihood (TGML)
loss function. Since Eq. (6) is differentiable with respect to all Zij values, we can learn the
adjacency matrix Z by minimizing the loss with gradient descent to find the estimated graph
Ẑ = argZ maxL(Y, Z). Eq. (6) works as a contrastive loss in which the first logarithmic term aims

5

A

D

B C

S

E

Graph Adjacency Matrix

Observed
Key-steps

0.1

0.55

0.95

Feasibility

 =

Goal: Estimate

Observed sequence
A B CDS E

A B CDS E

Observed Future

Example: estimate

0.7 0 0.10.1

0.05 0.45 0.40

0.7 0.2 00.05

A

A B

B

C

C

D

D

0.1

0.1

0.05

0.05 0.1 0.350.4 0

0 0.05 0.050.05 0.85

S

E

0 0 00 0

0

0

0

0

0

0

E

S

Figure 2: Given a sequence < S,A,B,D,C,E >, and a graph G with adjacency matrix Z, our
goal is to estimate the likelihood P (< S,A,B,D,C,E > |Z), which can be done by factorizing
the expression into simpler terms. The figure shows an example of computation of probability
P (D|S,A,B,Z) as the ratio of the “feasibility of sampling key-step D, having observed key-steps S,
A, and B” to the sum of all feasibility scores for unobserved symbols. Feasibility values are computed
by summing weights of edges D → X for all observed key-steps X .

Modeling Sequence Likelihood for a Weighted Graph To enable gradient-based learning, we
consider the general case of a continuous adjacency matrix Z ↑ [0, 1](n+2)→(n+2). We generalize
the concept of “possible cases” discussed in the previous section with the concept of “feasibility of
sampling a given key-step Ki, having observed a set of key-steps KJ , given graph Z”, which we
define as the sum of all weights of edges between observed key-steps KJ and Ki: f(Ki|KJ , Z) =∑

j↑J
Zij . Intuitively, if key-step ki has many satisfied pre-conditions, we are more likely to sample

it as the next key-step. We hence define P (Ki|KJ , Z) as “the ratio of the feasibility of sampling Ki

to the sum of the feasibilities of sampling any unobserved key-step”:

P (Ki|KJ , Z) =
f(Ki|KJ , Z)∑

h↑J̄
f(Kh|KJ , Z)

=

∑
j↑J

Zij∑
h↑J̄

∑
j↑J

Zhj
(3)

Figure 2 illustrates the computation of the likelihood in Eq. (3). Plugging Eq. (3) into Eq. (1), we can
estimate the likelihood of a sequence y given graph Z as:

P (y|Z) = P (S|Z)

|y|∏

t=1

P (Kyt |KO(y,t), Z) =

|y|∏

t=1

∑
j↑O(y,t) Zytj∑

h↑O(y,t)

∑
j↑O(y,t) Zhj

. (4)

Where we set P (Ky0 |Z) = P (S|Z) = 1 as sequences always start with the start node S.

Task Graph Maximum Likelihood Loss Function Assuming that sequences y(i) ↑ Y are indepen-
dent and identically distributed, we define the likelihood of Y given graph Z as follows:

P (Y|Z) =

|Y|∏

k=1

P (y(k)|Z) =

|Y|∏

k=1

|y(k)
|∏

t=1

∑
j↑O(y(k),t) Zytj∑

h↑O(y(k),t)

∑
j↑O(y(k),t) Zhj

. (5)

We can find the optimal graph Z by maximizing the likelihood in Eq. (5), which is equivalent to
minimizing the negative log-likelihood ↓ logP (Y, Z), leading to formulating the following loss:

L(Y, Z) = ↓

|Y |∑

k=1

|y(k)
|∑

t=1

(
log

∑

j↑O(y(k),t)

Zytj ↓ ω · log
∑

h↑O(y(k),t)

j↑O(y(k),t)

Zhj

)
(6)

where ω is a hyper-parameter. We refer to Eq. (6) as the Task Graph Maximum Likelihood (TGML)
loss function. Since Eq. (6) is differentiable with respect to all Zij values, we can learn the
adjacency matrix Z by minimizing the loss with gradient descent to find the estimated graph
Ẑ = argZ maxL(Y, Z). Eq. (6) works as a contrastive loss in which the first logarithmic term aims

5

Models
2. We propose two approaches to task graph learning…

10/11/24 Luigi Seminara 11

Models – Direct Optimization (DO)
2. …based on Direct Optimization (DO) of the adjacency matrix…

10/11/24 Luigi Seminara 12

Graph Learned Adjacency Matrix Training Sequence

positive gradients

negative gradients

Get a
Bowl

Crack
Egg

Add
Water

Add
Milk

MixPour
Mixture

(a) Example Task Graph

Current key-step

Task Graph Maximum Likelihood Loss

(b) Task Graph Learning as Maximum Likelihood Estimation

Figure 1: (a) An example task graph encoding dependencies in a “mix eggs” procedure. (b) We learn a
task graph which encodes a partial ordering between actions (left), represented as an adjacency matrix
Z (center), from input action sequences (right). The proposed Task Graph Maximum Likelihood
(TGML) loss directly supervises the entries of the adjacency matrix Z generating gradients to maxi-
mize the probability of edges from past nodes (K3,K1) to the current node (K2), while minimizing
the probability of edges from past nodes to future nodes (K4,K5) in a contrastive manner.

encoding dependencies between them (see Figure 1(a)). Graphs provide an explicit representation
which is readily interpretable by humans and easy to incorporate in downstream tasks such as detecting
mistakes or validating the execution of a procedure. While graphs have been historically used to
represent constraints in complex tasks and design optimal sub-tasks scheduling [34], graph-based
representations mined from videos [3], key-step sequences [35, 18] or external knowledge bases [40]
have only recently emerged as a powerful representation of procedural activities able to support
downstream tasks such as key-step recognition or forecasting [3, 40]. Despite these efforts, current
methods rely on meticulously crafted graph mining procedures rather than setting graph generation
in a learning framework, limiting the inclusion of task graph representations in end-to-end systems.

In this work, we propose an approach to learn task graphs from demonstrations in the form of
sequences of key-steps performed by real users in a video while executing a procedure. Given a
directed graph represented as an adjacency matrix and a set of key-step sequences, we provide an
estimate of the likelihood of observing the set of sequences given the constraints encoded in the
graph. We hence formulate task graph learning under the well-understood framework of Maximum
Likelihood (ML) estimation, and propose a novel differentiable Task Graph Maximum Likelihood
(TGML) loss function which can be naturally plugged into any neural-based architecture for direct
optimization of task graph from data. Intuitively, our TGML loss generates positive gradients
to strengthen the weights of directed edges B ! A when observing the < . . . , A, . . . , B, . . . >
structure, while pushing down the weights of all other edges in a contrastive manner (see Figure 1(b).
To evaluate the effectiveness of the proposed framework, we propose two approaches to task graph
learning. The first approach, “Direct Optimization (DO)” uses the proposed TGML loss to directly
optimize the weights of the adjacency matrix, which constitute the only parameters of the model. The
output of the optimization procedure is the learned graph. The second approach, termed Task Graph
Transformer (TGT) is a feature-based model which uses a transformer encoder and a relation head to
predict the adjacency matrix from either text or video key-step embeddings.

We validate the ability of our framework to learn meaningful task graphs on the CaptainCook4D
dataset [26]. Comparisons with state-of-the-art approaches show superior performance of both
proposed approaches on task graph generation, with boosts of up to +16.7% over prior methods.
On the same dataset, we show that our feature-based approach implicitly gains video understanding
abilities on two fundamental tasks [42]: pairwise ordering and future prediction. We finally assess
the usefulness of the learned graph-based representation on the downstream task of online mistake
detection in procedural egocentric videos. To tackle this task, we observe that procedural errors mainly
arise from the execution of a given key-step without the correct execution of its pre-conditions. We
hence design an approach which uses the learned graph to check whether pre-conditions for the current
action are satisfied, signaling a mistake when they are not, obtaining significant gains of +19.8% and
+7.5% in the online mistake detection benchmark recently introduced in [12] on Assembly101 [33]
and EPIC-Tent [17], showcasing the relevance and quality of the learned graph-based representations.

The contributions of this work are: 1) We introduce a novel framework for learning task graphs
from action sequences, which relies on maximum likelihood estimation to provide a differentiable
loss function which can be included in end-to-end models and optimized with gradient descent; 2)

2

Models – Task Graph Transformer (TGT)
2. …and a transformer based on the processing of textual descriptions of key-steps

or video embeddings Task Graph Transformer (TGT).

10/11/24 Luigi Seminara 13

Concat. all
combinations

M
LP

M
LP

Tr
as

fo
rm

er
 L

ay
er

Tr
as

fo
rm

er
 L

ay
er

Relation transformer
with dim. reduction

Adjacency Matrix

Distinctiveness
Cross-Entropy Loss

pairwise cosine
similarities

...

Sequences

Relation Head

Transformer
Encoder

s

e

s

e

s s

e

e
e

e ee

s s
s

...

...

...
...

TGML
Loss

s

s ... e
s ... e

Take bowl

Take Eggs

Break Eggs

Mix Eggs

Vi
de

o
Em

be
dd

in
gs

Te
xt

 E
m

be
dd

in
gs

RS

EgoVLPv2

RS

Learned Start Embedding

Learned End Embedding

RS

RS

OR

EgoVLPv2

Figure 1: Our Task Graph Transformer (TGT) takes as input either D-dimensional text embeddings extracted from key-step names

or video embeddings extracted from key-step segments. In both cases, we extract features with a pre-trained EgoVLPv2 model.

For video embeddings, multiple embeddings can refer to the same action, so we randomly select one for each key-step (RS blocks).

Learnable start (S) and end (E) embeddings are also included. Key-step embeddings are processed using a transformer encoder and

regularized with a distinctiveness cross-entropy to prevent representation collapse. The output embeddings are processed by our

relation head, which concatenates vectors across all (n+2)
2
possible node pairs, producing (n+2)⇥ (n+2)⇥ 2D relation vectors.

These vectors are then processed by a relation transformer, which progressively maps them to an (n+2)⇥(n+2) adjacency matrix.

The model is supervised with input sequences using our proposed Task Graph Maximum Likelihood (TGML) loss.

Figure 2: The plots show the trend of the F1 score (Average, Correct, and Mistake) as the perturbation rate increases in the case of

Assembly101 (left) and EPIC-tent (right). Results suggest that the proposed approach can still bring benefits even in the presence

of imperfect action detections, with the average F1 score dropping down 10� 15 points with a moderate noise level of 20%.

Read

Instruction
Spread Tent

Pickup/Open

Tentbag

Pickup/Open

Supportbag

START

Read Instruction

Pickup/Open
Tentbag

Spread Tent
Pickup/Open
Supportbag

Assemble
Support

Insert Support
Insert Support

Tab
Insert Stake

Pickup/Place
Ventcover

Pickup/Open
Stakebag

Place Guyline

Tie Top

END

Assemble

Support

Insert

Support

Insert

Support Tab

Pickup/Open

Stakebag
Spread Tent

Past key-steps Current key-step

START

Read Instruction

Pickup/Open
Tentbag

Spread Tent
Pickup/Open
Supportbag

Assemble
Support

...

GT: correct

Past key-steps Current key-step

Read

Instruction

Pickup/Open

Tentbag

Pickup/Open

Supportbag

correct correctGT: correct correct correct correct correct correct correct correct mistake

Figure 3: A success (left) and failure (right) case on EPIC-Tent. Past key-steps’ colors match nodes’ colors. On the left, the current

key-step “Pickup/Open Stakebag” is correctly evaluated as a mistake because the step “Pickup/Place Ventcover” is a precondition of

the current key-step, but it is not included among the previous key-steps. On the right, “Pickup/Open Supportbag” is incorrectly

evaluated as mistake because the step “Spread Tent” is precondition of the current key-step, but it is not included among the

previous key-steps. This is due to the fact that our method wrongly predicted “Spread Tent” as a pre-condition of “Pickup/Open

Supportbag”, probably due to the two actions often occurring in this order.

Table 1: We trained a single TGT-text model for all Captain-

Cook4D procedures. The table highlights that our unified model

brings small improvements over the single models.

Method Precision Recall F1

TGT-text (single) 71.7 72.9 72.1

TGT-text (unified) 72.0 78.3 74.9

Table 2: We followed a “leave-one-out” scheme in which we

trained the TGT on all procedures except one and then fine-tuned

the model on sequences for the held-out procedure (hence a 5-shot

regime). The table shows that our approach greatly improves over

competitors which are unable to leverage transfer learning.

Method Precision Recall F1

MSGI [35] 12.1 14.9 13.4

Count-Based [3] 64.6 53.4 58.4

MSG
2
[18] 54.5 52.7 53.5

TGT-text (Ours) 64.3 71.7 67.7

Experiments on CaptainCook4D

10/11/24 Luigi Seminara 14

• Peddi, Rohith, et al. "CaptainCook4D: A dataset for understanding errors in procedural activities." arXiv preprint arXiv:2312.14556 (2023).

Table 1: Task graph generation results on CaptainCook4D.
Best results are in bold, second best results are underlined,
best results among competitors are highlighted. Confi-
dence interval bounds computed at 90% conf. for 5 runs.

Method Precision Recall F1

MSGI [39] 11.9 14.0 12.8
LLM 52.9 57.4 55.0
Count-Based [3] 66.7 55.6 60.6
MSG2 [20] 70.9 71.6 71.1
TGT-text (Ours) 79.9 ±8.8 81.9 ±6.9 80.8 ±8.0

DO (Ours) 86.4 ±1.5 89.7 ±1.5 87.8 ±1.5

Improvement +15.5 +18.1 +16.7

Table 2: We compare the abilities of our
TGT model trained on visual features
to generalize to two fundamental video
understanding tasks, i.e., pairwise order-
ing and future prediction. Despite not
being explicitly trained for these tasks,
our model exhibits video understanding
abilities, surpassing the baseline.

Method Ordering Fut. Pred.

Random 50.0 50.0
TGT-video 77.3 74.3
Improvement +27.3 +24.3

pairwise cosine similarities Y = X ·XT
· exp(T) as in [33]. To prevent the transformer encoder

from mapping distinct key-step embeddings to similar representations, we enforce the values outside
the diagonal of Y to be smaller than the values in the diagonal. This is done by encouraging each row
of the matrix Y to be close to a one-hot vector with a cross-entropy loss. Regularized embeddings are
finally passed through a relation transformer head which considers all possible pairs of embeddings
and concatenates them in a (n+2)→ (n+2)→ 2D matrix R of relation vectors. For instance, R[i, j]
is the concatenation of vectors X[i] and X[j]. Relation vectors are passed to a transformer layer
which aims to mine relationships among relation vectors, followed by a multilayer perceptron to
reduce dimensionality to 16 units and another pair of transformer layer and multilayer perceptron to
map relation vectors to scalar values, which are reshaped to size (n+ 2)→ (n+ 2) to form the score
matrix A. We hence apply the same optimization procedure as in the DO method to supervise the
whole architecture.

4 Experiments and Results

4.1 Graph Generation

Problem Setup We evaluate the ability of our approach to learn task graph representations on
CaptainCook4D [30], a dataset of egocentric videos of 24 cooking procedures performed by 8
volunteers. Each procedure is accompanied by a task graph describing key-steps constraints. We
tackle task graph generation as a weakly supervised learning problem in which models have to
generate valid graphs by only observing labeled action sequences (weak supervision) rather than
relying on task graph annotations (strong supervision), which are not available at training time. All
models are trained on videos that are free from ordering errors or missing steps to provide a likely
representation of procedures. We use the two proposed methods in the previous section to learn 24
task graph models, one per procedure, and report average performance across procedures.

Compared Approaches We compare our methods with previous approaches to task graph generation,
and in particular with MSGI [39] and MSG2 [20], which are approaches for task graph generation
based on Inductive Logic Programming (ILP). We also consider the recent approach proposed in [3]
which generates a graph by counting co-occurrences of matched video segments. Since we assume
labeled actions to be available at training time, we do not perform video matching and use ground
truth segment matching provided by the annotations. This approach is referred to as “Count-Based”.
Given the popularity of large language models as reasoning modules, we also consider a baseline
which uses a large language model5 to generate a task graph from key-step descriptions, without any
access to key-step sequences.6 We refer to this model as “LLM”.

Graph Generation Results Results in Table 1 highlight the complexity of the task, with classic
approaches based on inductive logic, such as MSGI, achieving poor performance (12.8 F1), language
models and count-based statistics reconstructing only basic elements of the graph (55.0 and 60.6 F1

for LLM and Count-Based respectively), and even more recent methods based on inductive logic and
heuristics only partially predicting the graph (71.1 F1 of MSG2). The proposed Direct Optimization

5We base our experiments on ChatGPT [1].

7

Table 1: Task graph generation results on CaptainCook4D.
Best results are in bold, second best results are underlined,
best results among competitors are highlighted. Confi-
dence interval bounds computed at 90% conf. for 5 runs.

Method Precision Recall F1

MSGI [39] 11.9 14.0 12.8
LLM 52.9 57.4 55.0
Count-Based [3] 66.7 55.6 60.6
MSG2 [20] 70.9 71.6 71.1
TGT-text (Ours) 79.9 ±8.8 81.9 ±6.9 80.8 ±8.0

DO (Ours) 86.4 ±1.5 89.7 ±1.5 87.8 ±1.5

Improvement +15.5 +18.1 +16.7

Table 2: We compare the abilities of our
TGT model trained on visual features
to generalize to two fundamental video
understanding tasks, i.e., pairwise order-
ing and future prediction. Despite not
being explicitly trained for these tasks,
our model exhibits video understanding
abilities, surpassing the baseline.

Method Ordering Fut. Pred.

Random 50.0 50.0
TGT-video 77.3 74.3
Improvement +27.3 +24.3

pairwise cosine similarities Y = X ·XT
· exp(T) as in [33]. To prevent the transformer encoder

from mapping distinct key-step embeddings to similar representations, we enforce the values outside
the diagonal of Y to be smaller than the values in the diagonal. This is done by encouraging each row
of the matrix Y to be close to a one-hot vector with a cross-entropy loss. Regularized embeddings are
finally passed through a relation transformer head which considers all possible pairs of embeddings
and concatenates them in a (n+2)→ (n+2)→ 2D matrix R of relation vectors. For instance, R[i, j]
is the concatenation of vectors X[i] and X[j]. Relation vectors are passed to a transformer layer
which aims to mine relationships among relation vectors, followed by a multilayer perceptron to
reduce dimensionality to 16 units and another pair of transformer layer and multilayer perceptron to
map relation vectors to scalar values, which are reshaped to size (n+ 2)→ (n+ 2) to form the score
matrix A. We hence apply the same optimization procedure as in the DO method to supervise the
whole architecture.

4 Experiments and Results

4.1 Graph Generation

Problem Setup We evaluate the ability of our approach to learn task graph representations on
CaptainCook4D [30], a dataset of egocentric videos of 24 cooking procedures performed by 8
volunteers. Each procedure is accompanied by a task graph describing key-steps constraints. We
tackle task graph generation as a weakly supervised learning problem in which models have to
generate valid graphs by only observing labeled action sequences (weak supervision) rather than
relying on task graph annotations (strong supervision), which are not available at training time. All
models are trained on videos that are free from ordering errors or missing steps to provide a likely
representation of procedures. We use the two proposed methods in the previous section to learn 24
task graph models, one per procedure, and report average performance across procedures.

Compared Approaches We compare our methods with previous approaches to task graph generation,
and in particular with MSGI [39] and MSG2 [20], which are approaches for task graph generation
based on Inductive Logic Programming (ILP). We also consider the recent approach proposed in [3]
which generates a graph by counting co-occurrences of matched video segments. Since we assume
labeled actions to be available at training time, we do not perform video matching and use ground
truth segment matching provided by the annotations. This approach is referred to as “Count-Based”.
Given the popularity of large language models as reasoning modules, we also consider a baseline
which uses a large language model5 to generate a task graph from key-step descriptions, without any
access to key-step sequences.6 We refer to this model as “LLM”.

Graph Generation Results Results in Table 1 highlight the complexity of the task, with classic
approaches based on inductive logic, such as MSGI, achieving poor performance (12.8 F1), language
models and count-based statistics reconstructing only basic elements of the graph (55.0 and 60.6 F1

for LLM and Count-Based respectively), and even more recent methods based on inductive logic and
heuristics only partially predicting the graph (71.1 F1 of MSG2). The proposed Direct Optimization

5We base our experiments on ChatGPT [1].

7

Experiments on CaptainCook4D

10/11/24 Luigi Seminara 15

• Peddi, Rohith, et al. "CaptainCook4D: A dataset for understanding errors in procedural activities." arXiv preprint arXiv:2312.14556 (2023).

Online Mistake Detection
3. We assess the accuracy of the proposed task graph generation approach

and showcase the usefulness of the learned graphs on the downstream task of
online mistake detection.

10/11/24 Luigi Seminara 16

• Flaborea, Alessandro, et al. "PREGO: online mistake detection in PRocedural EGOcentric videos." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Table 3: Online mistake detection results. Results obtained with ground truth action sequences are
denoted with →, while results obtained on predicted action sequences are denoted with +.

Assembly101-O EPIC-Tent-O

Avg Correct Mistake Avg Correct Mistake

Method F1 F1 Prec Rec F1 Prec Rec F1 F1 Prec Rec F1 Prec Rec

Count-Based→ [3] 26.0 9.2 4.8 85.7 42.8 97.8 27.4 56.6 92.5 92.8 92.2 20.7 20.0 21.4
LLM→ 29.3 15.1 8.3 87.2 43.4 96.7 27.9 47.7 86.3 82.4 90.6 9.1 13.3 6.9

MSGI→ [39] 33.1 22.7 13.1 84.4 43.5 93.4 28.3 44.5 66.9 51.6 95.2 22.0 73.3 12.9
PREGO→ [13] 39.4 32.6 89.7 19.9 46.3 30.7 94.0 32.1 45.0 95.7 29.4 19.1 10.7 86.7

MSG2→ [20] 56.1 63.9 51.5 84.2 48.2 73.6 35.8 54.1 92.9 94.1 91.7 15.4 13.3 18.2
TGT-text (Ours)→ 62.8 69.8 56.8 90.6 55.7 84.1 41.7 64.1 93.8 94.1 93.5 34.5 33.3 35.7
DO (Ours)→ 75.9 90.2 98.2 83.4 61.6 46.7 90.4 58.3 93.5 94.8 92.4 23.1 20.0 27.3
Improvement→ +19.8 +26.3 +13.4 +7.5 +0.9 +12.5

Count-Based+ [3] 23.2 2.6 1.3 66.7 43.9 98.4 28.2 40.4 59.2 42.9 95.5 21.6 80.0 12.5

LLM+ 28.1 15.1 7.8 65.5 42.3 89.5 27.7 35.9 61.6 46.7 90.4 10.2 40.0 5.8

MSGI+ [39] 28.4 14.0 7.8 67.9 42.7 90.7 28.0 40.4 59.2 42.9 95.5 21.6 80.0 12.5

PREGO+ [13] 32.5 23.1 68.8 13.9 41.8 27.8 84.1 29.4 41.6 97.9 26.4 17.2 9.5 93.3

MSG2+ [20] 46.2 59.1 51.2 70.0 33.2 44.5 26.5 45.2 67.5 52.4 95.1 22.9 73.3 13.6

TGT-text (Ours)+ 53.0 67.8 62.3 74.5 38.2 46.2 32.6 43.8 69.5 55.8 92.1 18.2 53.3 11.0

DO (Ours)+ 53.5 78.9 85.0 73.5 28.1 22.5 37.3 46.5 69.3 54.4 95.2 23.7 73.3 14.1

Improvement+ +7.3 +19.8 -5.7 +1.3 +1.2 +1.2

highlights that the main failure modes are due to large imbalances between precision and recall. For
instance, the Count-Based method achieves a precision of only 4.8 with a recall of 85.7 in predicting
correct segments on Assembly101-O. In contrast, the proposed approach obtains balanced precision
and recall values in detecting correct segments in Assembly101-O (98.2/83.4) and EPIC-Tent-O
(94.1/93.5), and detecting mistakes in EPIC-Tent-O (33.3/35.7), while the prediction of mistakes
on Assembly101-O is more skewed (46.7/90.4). Results based on action sequences predicted from
video (bottom part of Table 3) highlight the challenging nature of the task when considering noisy
action sequences (see Figure 4). While the explicit task graph representation may not accurately
reflect the predicted noisy action sequences, we still observe improvements over previous approaches
of +7.3 and +1.3 in average F1 score in Assembly101-O and EPIC-Tent-O. Remarkably, best
competitors are still graph-based methods, such as MSG2 and the Count-Based approach, with
significant improvements over the implicit representation of the PREGO model (32.5 average F1

versus 53.5 of the proposed DO model). Also, in this case, we observe that graph-based methods
tend to be skewed towards detecting correct action sequences. In this regard, our TGT model only
achieves 38.2 in mistake F1 score, a drop in 5.7 points over the best performer, the Count-Based
method, which, on the other hand, only achieves an F1 score of 2.6 when predicting correct segments.

5 Limitations

The proposed approach requires the availability of key-step sequences, a common assumption of
works addressing other video understanding tasks [6, 22, 19, 17, 18]. While our method is applicable
to any fully supervised video understanding dataset, future works should focus on overcoming such
limitation and taking advantage of the vast amount of unlabeled video and textual data sets. While
the proposed TGT method has shown promising results when trained directly on video features, the
investigation of task graph learning in the absence of labeled key-step sequences is beyond the scope
of this paper. We noted a reduced ability of our approach to work with noisy action sequences and a
tendency to hallucinate pre-conditions, likely due to the limited expressivity of key-step sequences
arising from videos showing the most common ways to perform a procedure. The performance
of our designed system to detect mistakes is influenced by the quality of action recognition (see
Figure 4). If the action recognition module fails to detect an action, the method may incorrectly
signal a missing pre-condition. Conversely, if an action is falsely detected as performed, the method
may fail to signal an actual mistake. Future improvements in online action recognition will enhance
the robustness of our method. Furthermore, our approach does not explicitly model “optional”

9

Table 3: Online mistake detection results. Results obtained with ground truth action sequences are
denoted with →, while results obtained on predicted action sequences are denoted with +.

Assembly101-O EPIC-Tent-O

Avg Correct Mistake Avg Correct Mistake

Method F1 F1 Prec Rec F1 Prec Rec F1 F1 Prec Rec F1 Prec Rec

Count-Based→ [3] 26.0 9.2 4.8 85.7 42.8 97.8 27.4 56.6 92.5 92.8 92.2 20.7 20.0 21.4
LLM→ 29.3 15.1 8.3 87.2 43.4 96.7 27.9 47.7 86.3 82.4 90.6 9.1 13.3 6.9

MSGI→ [39] 33.1 22.7 13.1 84.4 43.5 93.4 28.3 44.5 66.9 51.6 95.2 22.0 73.3 12.9
PREGO→ [13] 39.4 32.6 89.7 19.9 46.3 30.7 94.0 32.1 45.0 95.7 29.4 19.1 10.7 86.7

MSG2→ [20] 56.1 63.9 51.5 84.2 48.2 73.6 35.8 54.1 92.9 94.1 91.7 15.4 13.3 18.2
TGT-text (Ours)→ 62.8 69.8 56.8 90.6 55.7 84.1 41.7 64.1 93.8 94.1 93.5 34.5 33.3 35.7
DO (Ours)→ 75.9 90.2 98.2 83.4 61.6 46.7 90.4 58.3 93.5 94.8 92.4 23.1 20.0 27.3
Improvement→ +19.8 +26.3 +13.4 +7.5 +0.9 +12.5

Count-Based+ [3] 23.2 2.6 1.3 66.7 43.9 98.4 28.2 40.4 59.2 42.9 95.5 21.6 80.0 12.5

LLM+ 28.1 15.1 7.8 65.5 42.3 89.5 27.7 35.9 61.6 46.7 90.4 10.2 40.0 5.8

MSGI+ [39] 28.4 14.0 7.8 67.9 42.7 90.7 28.0 40.4 59.2 42.9 95.5 21.6 80.0 12.5

PREGO+ [13] 32.5 23.1 68.8 13.9 41.8 27.8 84.1 29.4 41.6 97.9 26.4 17.2 9.5 93.3

MSG2+ [20] 46.2 59.1 51.2 70.0 33.2 44.5 26.5 45.2 67.5 52.4 95.1 22.9 73.3 13.6

TGT-text (Ours)+ 53.0 67.8 62.3 74.5 38.2 46.2 32.6 43.8 69.5 55.8 92.1 18.2 53.3 11.0

DO (Ours)+ 53.5 78.9 85.0 73.5 28.1 22.5 37.3 46.5 69.3 54.4 95.2 23.7 73.3 14.1

Improvement+ +7.3 +19.8 -5.7 +1.3 +1.2 +1.2

highlights that the main failure modes are due to large imbalances between precision and recall. For
instance, the Count-Based method achieves a precision of only 4.8 with a recall of 85.7 in predicting
correct segments on Assembly101-O. In contrast, the proposed approach obtains balanced precision
and recall values in detecting correct segments in Assembly101-O (98.2/83.4) and EPIC-Tent-O
(94.1/93.5), and detecting mistakes in EPIC-Tent-O (33.3/35.7), while the prediction of mistakes
on Assembly101-O is more skewed (46.7/90.4). Results based on action sequences predicted from
video (bottom part of Table 3) highlight the challenging nature of the task when considering noisy
action sequences (see Figure 4). While the explicit task graph representation may not accurately
reflect the predicted noisy action sequences, we still observe improvements over previous approaches
of +7.3 and +1.3 in average F1 score in Assembly101-O and EPIC-Tent-O. Remarkably, best
competitors are still graph-based methods, such as MSG2 and the Count-Based approach, with
significant improvements over the implicit representation of the PREGO model (32.5 average F1

versus 53.5 of the proposed DO model). Also, in this case, we observe that graph-based methods
tend to be skewed towards detecting correct action sequences. In this regard, our TGT model only
achieves 38.2 in mistake F1 score, a drop in 5.7 points over the best performer, the Count-Based
method, which, on the other hand, only achieves an F1 score of 2.6 when predicting correct segments.

5 Limitations

The proposed approach requires the availability of key-step sequences, a common assumption of
works addressing other video understanding tasks [6, 22, 19, 17, 18]. While our method is applicable
to any fully supervised video understanding dataset, future works should focus on overcoming such
limitation and taking advantage of the vast amount of unlabeled video and textual data sets. While
the proposed TGT method has shown promising results when trained directly on video features, the
investigation of task graph learning in the absence of labeled key-step sequences is beyond the scope
of this paper. We noted a reduced ability of our approach to work with noisy action sequences and a
tendency to hallucinate pre-conditions, likely due to the limited expressivity of key-step sequences
arising from videos showing the most common ways to perform a procedure. The performance
of our designed system to detect mistakes is influenced by the quality of action recognition (see
Figure 4). If the action recognition module fails to detect an action, the method may incorrectly
signal a missing pre-condition. Conversely, if an action is falsely detected as performed, the method
may fail to signal an actual mistake. Future improvements in online action recognition will enhance
the robustness of our method. Furthermore, our approach does not explicitly model “optional”

9

Online Mistake Detection
3. We assess the accuracy of the proposed task graph generation approach

and showcase the usefulness of the learned graphs on the downstream task of
online mistake detection.

10/11/24 Luigi Seminara 17

• Flaborea, Alessandro, et al. "PREGO: online mistake detection in PRocedural EGOcentric videos." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

Thanks for your attention!
Luigi Seminara (luigi.seminara@phd.unict.it)
Antonino Furnari (antonino.furnari@unict.it)
Giovanni Maria Farinella (giovanni.farinella@unict.it)

10/11/24 Luigi Seminara 18

University of Catania | Department of
Mathematics and Computer Science

