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Background

(a) Class Incremental Learning (c) Compositional Incremental Learning(b) Blurry Incremental Learning
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• Class incremental learning (class-IL) sets a strict limit on the old classes such 
that they should not recur in newly incoming tasks.

• Blurry incremental learning (blur-IL) allows the recurrence of previous 
classes in incremental sessions.

• However, both class-IL and blur-IL aims to improve object classification only, 
overlooking fine-grained states attached to the objects.
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• We conceive a novel task named Compositional Incremental Learning 
(composition-IL), enabling the model to continually learn new state-object 
compositions in an incremental fashion.

• The composition classes are disjoint across incremental tasks.
• The primitive classes encountered in old tasks are allowed to reappear in new 

tasks randomly.

Compositional Incremental Learning

(c) Compositional Incremental Learning



Main obstacle: ambiguous composition boundary
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(a) L2P (b) CompILer

• The existing SOTA methods prioritize the object primitive while neglecting the 
state primitive.

• Consequently, the compositions with the same object but with different states 
become ambiguous and indistinguishable.

• To address it, we propose a new model namely CompILer with dedicated loss 
functions.



CompILer: Compositional Incremental Learner
• Multi-pool Prompt Learning: construct three prompt pools to learn visual 

information related to states, objects and their compositions.
• Object-injected State Prompting: facilitate more judicious prompt selection 

within the state prompt pool, alleviating the hurdles posed by state learning.
• Generalized-mean Prompt Fusion: learns to achieve an optimal fusion, 

mitigating the influence of irrelevant information present in the prompts.
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Multi-pool Prompt Learning
• We construct three prompt pools for learning the states, objects and 

compositions individually. 
• To ensure inter-pool prompt discrepancy and intra-pool prompt diversity, we 

use directional decoupled loss between any two pools.
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Figure 4: Overall architecture of our composition incremental learner (CompILer), which comprises
multi-pool prompt learning, object-injected state prompting, and generalized-mean prompt fusion.
The multi-pool prompt learning mechanism captures information related to states, objects, and their
compositions, each through a dedicated pool. The object-injected state prompting utilizes the object
prompt to promote the state representation learning. Moreover, the generalized-mean prompt fusion
is used to prioritize the useful prompts and diminish the irrelevant ones.

better through adapting a set of learnable tokens in a prompt pool to a frozen pre-trained backbone.
Nevertheless, existing prompt-based approaches are initially designed for class-IL, thereby building
a single prompt pool for object classification solely. when dealing with state-object composition
classification, they tend to excessively prioritize the object primitive while neglecting the state
primitive. To this end, we propose to construct three discrepant and diversified prompt pools Ps,
Po and Pc, which serve to learn visual information related to states, objects and their compositions,
respectively. Besides, each pool is associated with a set of learnable keys K! for query-key prompt
selection. The three prompt pools and their keys are defined as:
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One important concern in such multi-pool prompt learning is how to enrich the prompts with the
avoidance of identical pools. To achieve it, we consider integrating inter-pool prompt discrepancy
and intra-pool prompt diversity jointly. On the one hand, the inter-pool prompts should be discrepant
as the visual information about states, objects, and compositions should be different. One the other
hand, within each pool, the intra-pool prompts should be diversified so to capture more comprehensive
features from all the classes.

In practice, we formulate a unified objective to regularize both inter-pool discrepancy and intra-pool
diversity, by leveraging a simple and effective directional decoupled loss used in [17]. The directional
decoupled (dd) loss between any two pools (e.g. Pi and Pj) is formulated as:
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where ✓nm measures the angle between any two prompts, n and m; ✏ is a scalar to avoid division by
zero. Note that, L(i,j)

dd
encourages the angles between each prompt to be at least ✓thre degrees. Since
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discrepancy loss for the three pools can be expressed with Linter = L
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. As opposed to Linter,
Lintra computes the angle between any two prompts within the same pool. Thus, it contains the case
when n = m, for which we set ✓thre � ✓nm = 0.
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Figure 4: Overall architecture of our composition incremental learner (CompILer), which comprises
multi-pool prompt learning, object-injected state prompting, and generalized-mean prompt fusion.
The multi-pool prompt learning mechanism captures information related to states, objects, and their
compositions, each through a dedicated pool. The object-injected state prompting utilizes the object
prompt to promote the state representation learning. Moreover, the generalized-mean prompt fusion
is used to prioritize the useful prompts and diminish the irrelevant ones.
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Object-injected State Prompting
• Pre-trained backbones are typically trained for object classification, thus under-

performing for state representation learning.
• We strategically inject object prompts to guide the selection of state prompts 

by cross attention mechanism.
• Query feature serves as Q, while fused object prompt serves as both K and V.
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Generalized-mean Prompt Fusion
• Mean pooling overlooks the relative importance of each selected prompt.
• In order to strengthen useful prompts and eliminate irrelevant ones, we exploit 

generalized-mean (GeM) prompt fusion which is given by:

• 𝜂 is a learnable parameter. 
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Classification Objectives
• We advocate using a symmetric cross entropy loss, which incorporates reverse 

cross entropy with vanilla cross entropy, to mitigate the impact of noisy data. 

• To establish alignment between the query and the selected prompts, we 
optimize a surrogate loss for state, object and composition prompting jointly.

• The total loss for training the whole CompILer model is:



Experiments
• New benchmarks:

• Split-Clothing: a fine-grained clothing dataset.
• Split-UT-Zappos: a fine-grained shoes dataset.

Table 9: Ablate the pooling on Split-Clothing (5 tasks).
Dataset Split-Clothing (5 tasks)
Pooling Avg Acc FTT(↓) State Object HM

Max 84.70±0.64 12.24±2.25 86.79±0.96 96.84±0.01 91.54±0.30
Mean 87.80±0.12 7.82±0.01 90.78±0.12 96.14±0.01 93.38±0.03
GeM 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

Table 10: Ablate the loss function on Split-Clothing (5 tasks).
Loss function Split-Clothing (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) State Object HM
X 88.17±0.08 8.08±0.27 90.99±0.21 96.41±0.08 93.62±0.03
X X 88.36±0.37 8.33±0.11 90.88±0.30 96.64±0.05 93.67±0.06
X X 88.32±0.56 7.82±0.64 90.85±0.57 96.61±0.07 93.66±0.12
X X 88.42±0.30 8.23±0.06 91.18±0.04 96.44±0.10 93.73±0.06
X X X 88.61±0.61 7.72±0.87 90.94±0.68 96.85±0.02 93.81±0.17
X X X X 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

Table 11: Ablate the loss function on Split-UT-Zappos (5 tasks).
Loss function Split-UT-Zappos (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) State Object HM
X 44.83±0.15 19.49±2.93 55.07±0.25 79.06±0.06 64.92±0.18
X X 45.47±0.07 20.14±0.43 55.92±0.05 79.14±0.13 65.47±0.03
X X 45.58±0.04 19.64±0.37 56.02±0.04 79.25±0.01 65.64±0.01
X X 45.62±0.13 20.13±0.14 55.98±0.24 79.45±0.20 65.68±0.08
X X X 46.01±0.69 19.50±0.86 56.31±0.72 79.53±0.05 65.94±0.40
X X X X 46.48±0.26 19.27±0.75 56.85±0.34 79.56±0.04 66.31±0.15

Dataset Compositions States Objects Images
Split-Clothing 35 9 8 15.9k
Split-UT-Zappos 80 15 12 28.5k
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• Number of incremental tasks:
• T=5 in Split-Clothing.
• T=5 or T=10 in Split-UT-Zappos.

• Evaluation metrics:
• Avg Acc: average accuracy on compositions. Higher is better.
• FTT: forgetting rate on compositions. Lower is better.
• State: average accuracy on states. Higher is better.
• Object: average accuracy objects. Higher is better.
• HM: harmonic mean between State and Object. Higher is better.



Experiments
• CompILer consistently outperforms all competitors on Avg Acc by a significant 

margin.
• For FTT scores, CompILer excels previous methods slightly on 5-task Split-

Clothing and 5-task Split-UT-Zappos, while falling behind Dual-Prompt and 
LGCL for the 10-task Split-UT-Zappos.Table 1: Avg Acc and FTT results on Split-Clothing (5 tasks) and Split-UT-Zappos (5 tasks and 10

tasks). The best results are marked in bold.
Datasets Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks) Split-UT-Zappos (10 tasks)
Metrics Avg Acc(↑) FTT(↓) Avg Acc(↑) FTT(↓) Avg Acc(↑) FTT(↓)
Upper Bound 97.02±0.10 - 68.71±0.41 - 68.71±0.41 -
EWC [10] 47.89±0.87 52.75±0.44 37.59±2.06 55.70±2.76 24.63±0.94 61.31±2.29
LwF [16] 49.96±0.68 44.22±0.53 40.15±0.43 49.61±0.68 30.38±1.41 58.15±0.20
iCaRL [32] 68.65±0.41 31.74±1.89 37.78±2.14 55.06±3.50 31.40±1.96 59.65±2.40
L2P [43] 80.22±0.41 14.23±0.44 42.20±2.18 20.41±2.76 31.65±0.16 31.02±1.62
Deep L2P++[43, 33] 80.55±0.45 12.60±1.90 42.37±0.65 30.10±1.56 30.68±0.35 32.20±1.96
Dual-Prompt [42] 87.87±0.63 7.71±0.25 43.30±0.19 19.41±2.80 33.01±1.65 24.61±1.11
CODA-Prompt [33] 86.35±0.20 8.99±0.71 43.35±0.29 21.76±2.45 31.40±0.36 30.54±2.63
LGCL [7] 87.32±0.10 7.58±0.06 - - 33.56±0.31 24.37±0.56
Sim-CompILer 88.38±0.08 8.01±0.42 45.70±0.68 20.06±0.62 33.30±0.10 30.31±0.03
CompILer 89.21±0.24 7.26±0.60 46.48±0.26 19.27±0.75 34.43±0.07 28.69±0.82

Then, we feed xp to a transformer encoder layer fr(·) and achieve P r

s
, P r

o
and P r

c
for classifying

state, object and composition classes, respectively. We estimate the probability via a classifier '!(·):
p(! | x) = '!(P

r

!
). For each image x, we denote its ground-truth distribution over labels with

q(! | x). When ! is consistent with the ground truth, then q(! | x) = 1; otherwise, q(! | x) = 0.
As a result, the cross entropy (CE) loss used for classification objective is:

L
!

CE
= �

⌦X

!=1

q(! | x) log p(! | x),⌦ 2 [|S| , |O| , |C|] , (7)

where ⌦ represents the number of classes. However, the model optimized with a standard CE loss
is easily affected by noisy samples during training. Instead, we advocate using a symmetric cross
entropy loss (SCE) [41], which incorporates an additional term called reverse cross entropy (RCE),
to mitigate the impact of noisy data. Contrary to CE, the formula for RCE loss is defined as:

L
!

RCE
= �

⌦X

!=1

p(! | x) log q(! | x),! 2 {s, o, c} . (8)

Then, the SCE loss combines two loss terms by L
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parameter that controls the weight of the RCE term. As a result, the whole SCE loss becomes LSCE =
L
c

SCE
+ �(Ls

SCE
+ L

o

SCE
), where � adjusts the weights between primitives and compositions.

Total Loss. The total loss for training the whole CompILer model is:
Ltotal = �1Linter + �2Lintra + �3Lsur + LSCE , (9)

where �1, �2, �3 are hyper-parameters balancing different terms.

Inference. During inference, we incorporate the primitive probabilities to aid the composition
probability. Hence, the final probability for composition classification is expressed with:

pfinal(c | x) = p(c | x) + µ(p(s | x) + p(o | x)), (10)
where µ adjusts the probabilities.

5 Experiments

5.1 Datasets and Metrics

We conduct experiments on two newly split datasets: Split-Clothing and Split-UT-Zappos as eluci-
dated in Section 3.2. We assess the overall performance on compositions using Average Accuracy
(Avg Acc) and Forgetting (FTT). A higher Avg Acc signifies stronger recognition abilities, while a
lower FTT indicates improved resilience against forgetting. Additionally, we provide individual Aver-
age Accuracy scores on states and objects, denoted as State and Object for simplicity. These metrics
imply the ability to recognize fine-grained primitives. Furthermore, we calculate the Harmonic Mean
(HM) between State and Object, i.e. HM = 2⇥ (State⇥Object)

(State+Object) . We provide more emphasis to Avg
Acc and HM due to their more comprehensive assessment. Avg Acc encompasses the plasticity and
stability [33, 2] and HM provides a holistic evaluation on both state and object.

7



Experiments
• CompILer consistently outperforms all competitors on state accuracy and HM 

simultaneously.
• The prompt-free methods achieve higher accuracy in state prediction than object 

prediction for Split-Clothing. This contrast is because the states in Split-Clothing 
are color-related descriptions, which are easier to capture with the help of 
parameter fine-tuning. 

Datasets Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks) Split-UT-Zappos (10 tasks)
Metrics State Object HM State Object HM State Object HM
Upper Bound 97.44±0.08 97.09±0.10 97.26±0.08 75.10±0.10 88.13±0.03 81.90±0.06 75.10±0.10 88.13±0.03 81.90±0.06
EWC [10] 86.49±0.97 52.72±1.30 67.50±0.97 47.95±1.26 76.53±0.91 58.90±0.53 39.29±2.69 67.64±1.97 49.69±2.30
LwF [16] 87.11±0.66 54.57±0.69 67.10±0.33 53.13±1.08 75.48±0.82 62.35±0.31 38.70±2.33 68.90±1.97 49.54±1.30
iCaRL [32] 91.21±1.05 71.70±0.99 80.28±0.74 51.71±0.95 75.03±0.49 61.22±0.78 38.94±2.01 67.10±1.05 49.27±1.58
L2P [43] 83.03±0.42 95.56±0.57 88.85±0.16 52.20±2.92 79.05±0.01 62.87±1.61 42.66±0.87 76.60±0.03 54.80±0.55
Dual-Prompt [42] 90.77±0.25 94.18±0.31 92.45±0.20 52.25±0.77 77.46±0.05 62.40±0.34 44.34±1.61 77.92±0.37 56.51±1.11
LGCL [7] 91.45±0.20 94.87±0.33 93.13±0.10 - - - 43.44±0.79 78.64±0.64 55.96±0.43
Sim-CompILer 91.15±0.10 96.32±0.02 93.66±0.02 55.93±1.23 79.69±0.06 65.72±0.53 45.88±0.38 75.72±0.67 57.14±0.06
CompILer 91.81±0.23 96.67±0.01 94.18±0.06 56.85±0.34 79.56±0.04 66.31±0.15 46.27±1.56 76.65±1.19 57.69±0.42
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Analyzing multi-pool prompt learning
• The inclusion of primitive prompt pool yields consistent gains over the baseline.
• The best results are achieved when the model integrates all three pools 

simultaneously.

Table 3: State, Object and HM results on Split-UT-Zappos (5 tasks) and Split-UT-Zappos (10 tasks).
Datasets Split-UT-Zappos (5 tasks) Split-UT-Zappos (10 tasks)
Metrics State Object HM State Object HM
Upper Bound 75.10±0.10 88.13±0.03 81.90±0.06 75.10±0.10 88.13±0.03 81.90±0.06
EWC [10] 47.95±1.26 76.53±0.91 58.90±0.53 39.29±2.69 67.64±1.97 49.69±2.30
LwF [16] 53.13±1.08 75.48±0.82 62.35±0.31 38.70±2.33 68.90±1.97 49.54±1.30
iCaRL [32] 51.71±0.95 75.03±0.49 61.22±0.78 38.94±2.01 67.10±1.05 49.27±1.58
L2P [43] 52.20±2.92 79.05±0.01 62.87±1.61 42.66±0.87 76.60±0.03 54.80±0.55
Dual-Prompt [42] 52.25±0.77 77.46±0.05 62.40±0.34 44.34±1.61 77.92±0.37 56.51±1.11
LGCL [7] - - - 43.44±0.79 78.64±0.64 55.96±0.43
Sim-CompILer 55.93±1.23 79.69±0.06 65.72±0.53 45.88±0.38 75.72±0.67 57.14±0.06
CompILer 56.85±0.34 79.56±0.04 66.31±0.15 46.27±1.56 76.65±1.19 57.69±0.42

Table 5: Ablative experiments for (a) object-injected state prompting, (b) prompt fusion method.
(a) Object-injected state prompting.

Dataset Split-Clothing (5 tasks)
Metrics Avg Acc FTT(↓) HM
None 88.45±0.10 7.93±0.11 93.70±0.03
S!O 88.27±0.02 7.99±0.05 93.67±0.01
O!S 89.21±0.24 7.26±0.60 94.18±0.06

(b) Prompt fusion method.
Dataset Split-Clothing (5 tasks)
Metrics Avg Acc FTT(↓) HM

Max 84.70±0.64 12.24±2.25 91.54±0.30
Mean 87.80±0.12 7.82±0.01 93.38±0.03
GeM 89.21±0.24 7.26±0.60 94.18±0.06

trained for object classification, and are frozen across incremental sessions. As the performance
improvements are mainly attributed to the accuracy of state recognition, it suggests that our model
enhances the understanding on fine-grained compositionality.

5.5 Ablation Study and Analysis

Table 4: Ablation study on multi-pool prompt learning
with Split-Clothing dataset.

Prompt Pool Split-Clothing (5 tasks)
C S O Avg Acc FTT(↓) HM
X 80.22±0.41 14.23±0.44 88.85±0.16
X X 88.10±0.11 7.79±0.04 93.55±0.04
X X 88.09±0.50 7.26±0.54 93.52±0.13
X X X 88.38±0.08 8.01±0.42 93.66±0.02

Effect of multi-pool prompt learn-
ing. This experiment aims to delineate
the contribution of three pools in Com-
pILer. We firstly implement a baseline
model with composition prompt pool
only. Building upon the baseline, we
develop two additional models, which
incorporate either object or state prompt
pool. As reported in Table 4, the in-
clusion of primitive prompt pool yields
consistent gains over the baseline. Fur-
thermore, the best results are achieved when the model integrates all three pools simultaneously. This
experiment signifies the significant necessity of exploiting multiple prompt pools for composition-IL.

Effect of object-injected state prompting. To provide insights into object-injected state prompting,
we compare three models: None (vanilla model), S!O (state-injected object prompting) and O!S
(object-injected state prompting). As shown in Table 5a, compared to the None model, the S!O
exhibits a decrease in all metrics, implying that state prompts may interfere with the selection of
object prompts. On the contrary, O!S outperforms the None model as we expect. This phenomenon
validates our motivation that state recognition is harder than object recognition, and thereby the
former cannot help the latter easily. Yet, it is a promising direction for future research.

Effect of generalized-mean prompt fusion. This study aims to study the impact of prompt fusion
on CompILer. As shown in Table 5b, GeM performs better than both max and mean pooling across
various metrics. It validates the benefit of GeM on mitigating irrelevant information in the selected
prompts. as it may hamper the model’s attention on image tokens.

Effect of loss functions. As shown in Table 6, we investigate the influence of loss functions used in
our model, including directional decoupled loss (Linter and Lintra) and symmetric cross entropy
loss (LCE and LRCE). The baseline model (the first row) includes all modules but is trained by cross
entropy loss only. By adding the RCE loss, the model is equivalent to training with the SCE loss,
which help to improve the robustness to noisy labels. The use of either Linter or Lintra improves the
performance on both datasets, and synchronously applying them witnesses all-around improvements
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Analyzing object-injected prompting & GeM
• S→O exhibits a decrease in all metrics, implying that state prompts may interfere 

with the selection of object prompts.
• O → S outperforms the None model as we expect.

• GeM performs better than both max and mean pooling across various metrics.
• It validates the benefit of GeM on mitigating irrelevant information in the selected 

prompts.
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improvements are mainly attributed to the accuracy of state recognition, it suggests that our model
enhances the understanding on fine-grained compositionality.

5.5 Ablation Study and Analysis
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with Split-Clothing dataset.
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Effect of multi-pool prompt learn-
ing. This experiment aims to delineate
the contribution of three pools in Com-
pILer. We firstly implement a baseline
model with composition prompt pool
only. Building upon the baseline, we
develop two additional models, which
incorporate either object or state prompt
pool. As reported in Table 4, the in-
clusion of primitive prompt pool yields
consistent gains over the baseline. Fur-
thermore, the best results are achieved when the model integrates all three pools simultaneously. This
experiment signifies the significant necessity of exploiting multiple prompt pools for composition-IL.

Effect of object-injected state prompting. To provide insights into object-injected state prompting,
we compare three models: None (vanilla model), S!O (state-injected object prompting) and O!S
(object-injected state prompting). As shown in Table 5a, compared to the None model, the S!O
exhibits a decrease in all metrics, implying that state prompts may interfere with the selection of
object prompts. On the contrary, O!S outperforms the None model as we expect. This phenomenon
validates our motivation that state recognition is harder than object recognition, and thereby the
former cannot help the latter easily. Yet, it is a promising direction for future research.

Effect of generalized-mean prompt fusion. This study aims to study the impact of prompt fusion
on CompILer. As shown in Table 5b, GeM performs better than both max and mean pooling across
various metrics. It validates the benefit of GeM on mitigating irrelevant information in the selected
prompts. as it may hamper the model’s attention on image tokens.

Effect of loss functions. As shown in Table 6, we investigate the influence of loss functions used in
our model, including directional decoupled loss (Linter and Lintra) and symmetric cross entropy
loss (LCE and LRCE). The baseline model (the first row) includes all modules but is trained by cross
entropy loss only. By adding the RCE loss, the model is equivalent to training with the SCE loss,
which help to improve the robustness to noisy labels. The use of either Linter or Lintra improves the
performance on both datasets, and synchronously applying them witnesses all-around improvements
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Analyzing loss function
• Baseline model (first row) includes all modules but is trained by cross entropy 

loss only.
• CompILer achieves the best results when combing all the loss terms during 

training.
Table 6: Ablate the loss functions on Split-Clothing and Split-UT-Zappos.

Loss function Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks)
LCE LRCE Linter Lintra Avg Acc FTT(↓) Avg Acc FTT(↓)
X 88.17±0.08 8.08±0.27 44.83±0.15 19.49±2.93
X X 88.36±0.37 8.33±0.11 45.47±0.07 20.14±0.43
X X 88.32±0.56 7.82±0.64 45.58±0.04 19.64±0.37
X X 88.42±0.30 8.23±0.06 45.62±0.13 20.13±0.14
X X X 88.61±0.61 7.72±0.87 46.01±0.69 19.50±0.86
X X X X 89.21±0.24 7.26±0.60 46.48±0.26 19.27±0.75

(d) Prediction Results
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Figure 6: Results and analysis. (a) to (c) show accuracy of CompILer on composition, state, and
object for each task in Split-Clothing. The x-axis represents the test stream, and the y-axis denotes the
status after training the Tk task. Darker background color indicates higher accuracy. (d) displays some
images and their predictions: top row is GT, middle row is CompILer prediction, and bottom row is
L2P [43] prediction. Green indicates correct predictions, while red indicates incorrect predictions.

compared to the baseline. Eventually, we achieve the best results when combing all the loss terms
during training.

5.6 Additional Results and Analysis

In order to study the repeatability characteristic in composition-IL, we exhibit more results on
Split-Clothing in Fig. 6: in (a), it shows a decreasing trend in composition accuracy along with the
introduction of new tasks; however, the green rectangles in (b) and (c) showcase that the accuracy
occasionally increases as more tasks are learned. We conjecture the reason is mostly attributed to
the re-occurrence of primitive concepts. This forward transfer is critical for incremental learners.
We compare the composition predictions between CompILer and L2P [43] in Fig. 6 (d). CompILer
predicts all the images correctly, while L2P makes some mistakes, particularly for state labels. This
limitation arises from an excessive focus on the dominant object primitive, while weakening the
attention toward state primitive. Fortunately, CompILer relieves the bias toward object classes, and
enhances the perception on state classes.

6 Conclusion

In this paper, we have proposed a novel task coined compositional incremental learning (compostion-
IL), which is stumbled by ambiguous composition boundary. To tackle it, we develop a learning-
to-prompt model, namely CompILer. Our model exploits multi-pool prompt learning to model
composition and primitive concepts, object-injected state prompting to improve the selection of
state prompts, and generalized-mean prompt fusion to eliminate irrelevant information. Extensive
experiments on two tailored datasets show that CompILer achieves state-of-the-art performance. In
the future, it is challenging yet potential to consider reasoning multiple state classes per object.
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Qualitative results
• (a) shows a decreasing trend in composition accuracy along with the introduction 

of new tasks.
• (b) and (c) showcase that the primitive accuracy occasionally increases as more 

tasks are learned.
• We conjecture the reason is mostly attributed to the re-occurrence of primitive 

concepts.

Table 6: Ablate the loss functions on Split-Clothing and Split-UT-Zappos.
Loss function Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks)
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X X 88.42±0.30 8.23±0.06 45.62±0.13 20.13±0.14
X X X 88.61±0.61 7.72±0.87 46.01±0.69 19.50±0.86
X X X X 89.21±0.24 7.26±0.60 46.48±0.26 19.27±0.75
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Figure 6: Results and analysis. (a) to (c) show accuracy of CompILer on composition, state, and
object for each task in Split-Clothing. The x-axis represents the test stream, and the y-axis denotes the
status after training the Tk task. Darker background color indicates higher accuracy. (d) displays some
images and their predictions: top row is GT, middle row is CompILer prediction, and bottom row is
L2P [43] prediction. Green indicates correct predictions, while red indicates incorrect predictions.

compared to the baseline. Eventually, we achieve the best results when combing all the loss terms
during training.
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In order to study the repeatability characteristic in composition-IL, we exhibit more results on
Split-Clothing in Fig. 6: in (a), it shows a decreasing trend in composition accuracy along with the
introduction of new tasks; however, the green rectangles in (b) and (c) showcase that the accuracy
occasionally increases as more tasks are learned. We conjecture the reason is mostly attributed to
the re-occurrence of primitive concepts. This forward transfer is critical for incremental learners.
We compare the composition predictions between CompILer and L2P [43] in Fig. 6 (d). CompILer
predicts all the images correctly, while L2P makes some mistakes, particularly for state labels. This
limitation arises from an excessive focus on the dominant object primitive, while weakening the
attention toward state primitive. Fortunately, CompILer relieves the bias toward object classes, and
enhances the perception on state classes.

6 Conclusion

In this paper, we have proposed a novel task coined compositional incremental learning (compostion-
IL), which is stumbled by ambiguous composition boundary. To tackle it, we develop a learning-
to-prompt model, namely CompILer. Our model exploits multi-pool prompt learning to model
composition and primitive concepts, object-injected state prompting to improve the selection of
state prompts, and generalized-mean prompt fusion to eliminate irrelevant information. Extensive
experiments on two tailored datasets show that CompILer achieves state-of-the-art performance. In
the future, it is challenging yet potential to consider reasoning multiple state classes per object.
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Qualitative results
• Comparison on composition predictions between CompILer and L2P.

Table 9: Ablate the pooling on Split-Clothing (5 tasks).
Dataset Split-Clothing (5 tasks)
Pooling Avg Acc FTT(↓) State Object HM

Max 84.70±0.64 12.24±2.25 86.79±0.96 96.84±0.01 91.54±0.30
Mean 87.80±0.12 7.82±0.01 90.78±0.12 96.14±0.01 93.38±0.03
GeM 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

Table 10: Ablate the loss function on Split-Clothing (5 tasks).
Loss function Split-Clothing (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) State Object HM
X 88.17±0.08 8.08±0.27 90.99±0.21 96.41±0.08 93.62±0.03
X X 88.36±0.37 8.33±0.11 90.88±0.30 96.64±0.05 93.67±0.06
X X 88.32±0.56 7.82±0.64 90.85±0.57 96.61±0.07 93.66±0.12
X X 88.42±0.30 8.23±0.06 91.18±0.04 96.44±0.10 93.73±0.06
X X X 88.61±0.61 7.72±0.87 90.94±0.68 96.85±0.02 93.81±0.17
X X X X 89.21±0.24 7.26±0.60 91.81±0.23 96.67±0.01 94.18±0.06

Table 11: Ablate the loss function on Split-UT-Zappos (5 tasks).
Loss function Split-UT-Zappos (5 tasks)

LCE LRCE Linter Lintra Avg Acc FTT(↓) State Object HM
X 44.83±0.15 19.49±2.93 55.07±0.25 79.06±0.06 64.92±0.18
X X 45.47±0.07 20.14±0.43 55.92±0.05 79.14±0.13 65.47±0.03
X X 45.58±0.04 19.64±0.37 56.02±0.04 79.25±0.01 65.64±0.01
X X 45.62±0.13 20.13±0.14 55.98±0.24 79.45±0.20 65.68±0.08
X X X 46.01±0.69 19.50±0.86 56.31±0.72 79.53±0.05 65.94±0.40
X X X X 46.48±0.26 19.27±0.75 56.85±0.34 79.56±0.04 66.31±0.15
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Figure 10: More qualitative results. For each sample, top row is ground-truth label (in black), middle
row is CompILer prediction, and bottom row is L2P [43] prediction. The primitives in green and red
refer to correct and incorrect predictions.
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Summary
New Tasks: Compositional 

Incremental Learning

New model: Compositional 
Incremental Learner

New Benchmarks: Split-
Clothing & Split-UT-Zappos

New Metrics: State, Object 
and HM

Code at https://github.com/Yanyi-Zhang/CompILer


