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Background

* Class incremental learning (class-IL) sets a strict limit on the old classes such
that they should not recur in newly incoming tasks.
* Blurry incremental learning (blur-IL) allows the recurrence of previous

classes 1n incremental sessions.
* However, both class-IL and blur-IL aims to improve object classification only,

overlooking fine-grained states attached to the objects.

(a) Class Incremental Learning (b) Blurry Incremental Learning
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Compositional Incremental Learning

* We conceive a novel task named Compositional Incremental Learning
(composition-IL), enabling the model to continually learn new state-object
compositions in an incremental fashion.

* The composition classes are disjoint across incremental tasks.

* The primitive classes encountered 1n old tasks are allowed to reappear in new
tasks randomly.

(¢) Compositional Incremental Learning
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Main obstacle: ambiguous composition boundary

* The existing SOTA methods prioritize the object primitive while neglecting the
state primitive.

* Consequently, the compositions with the same object but with different states
become ambiguous and indistinguishable.

* To address 1t, we propose a new model namely ComplLer with dedicated loss
functions.

O Red Shoes
White Shoes
Pink Skirt
White Dress

O Blue Dress

O Black Dress

O Yellow Dress

(b) ComplLer



ComplLer: Compositional Incremental Learner

* Multi-pool Prompt Learning: construct three prompt pools to learn visual
information related to states, objects and their compositions.

* Object-injected State Prompting: facilitate more judicious prompt selection
within the state prompt pool, alleviating the hurdles posed by state learning.

* Generalized-mean Prompt Fusion: learns to achieve an optimal fusion,
mitigating the influence of irrelevant information present in the prompts.
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Multi-pool Prompt Learning

* We construct three prompt pools for learning the states, objects and
compositions individually.

* To ensure inter-pool prompt discrepancy and intra-pool prompt diversity, we
use directional decoupled loss between any two pools.
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Object-injected State Prompting

* Pre-trained backbones are typically trained for object classification, thus under-
performing for state representation learning.

* We strategically inject object prompts to guide the selection of state prompts
by cross attention mechanism.

* Query feature serves as Q, while fused object prompt serves as both K and V.
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Generalized-mean Prompt Fusion

* Mean pooling overlooks the relative importance of each selected prompt.
* In order to strengthen useful prompts and eliminate irrelevant ones, we exploit
generalized-mean (GeM) prompt fusion which 1s given by:
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Classification Objectives

* We advocate using a symmetric cross entropy loss, which incorporates reverse
cross entropy with vanilla cross entropy, to mitigate the impact of noisy data.

w - w w
L%cr = Lég + aL%cE
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* To establish alignment between the query and the selected prompts, we
optimize a surrogate loss for state, object and composition prompting jointly.

I Z ZCOS(fw(:E),K(ff), w € {s,0,c}

W qu

* The total loss for training the whole ComplLer model is:
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Experiments

e New benchmarks:

Split-Clothing: a fine-grained clothing dataset.
Split-UT-Zappos: a fine-grained shoes dataset.

Dataset Compositions States Objects Images
Split-Clothing 35 9 8 15.9k
Split-UT-Zappos 80 15 12 28.5k

e Number of incremental tasks:

T=5 1n Split-Clothing.
T=5 or T=10 1n Split-UT-Zappos.

 Evaluation metrics:

Avg Acc: average accuracy on compositions. Higher 1s better.
FTT: forgetting rate on compositions. Lower 1s better.

State: average accuracy on states. Higher 1s better.

Object: average accuracy objects. Higher 1s better.

HM: harmonic mean between State and Object. Higher is better.



Experiments

* ComplLer consistently outperforms all competitors on Avg Acc by a significant

margin.

* For FTT scores, ComplLer excels previous methods slightly on 5-task Split-
Clothing and 5-task Split-UT-Zappos, while falling behind Dual-Prompt and

LGCL for the 10-task Split-UT-Zappos.

Datasets Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks) || Split-UT-Zappos (10 tasks)
Metrics Avg Acc(7) FTT(]) Avg Acc(7) FTT() Avg Acc(7) FTT(])
Upper Bound 97.02+0.10 - 68.71+0.41 - 68.71+0.41 -

"EWC[10] || 47.89+0.87 52.75+0.44 || 37.59+£2.06 55.70+2.76 || 24.63£0.94 61.31+2.29
LwF [16] 49.96+0.68 44.22+0.53 || 40.15£0.43 49.61+0.68 || 30.38+x1.41  58.15+0.20
1CaRL [32] 68.65+0.41 31.74+£1.89 || 37.78+2.14 55.06£3.50 || 31.40£1.96  59.65%2.40

CL2P[43] || 80.22+0.41 14.23+0.44 || 42.20+£2.18 20.41£2.76 || 31.65+£0.16  31.02+1.62
Deep L2P++[43, 33] || 80.55£0.45 12.60+£1.90 || 42.37+£0.65 30.10£1.56 || 30.68+0.35 32.20%+1.96
Dual-Prompt [42] 87.87£0.63  7.71+£0.25 || 43.30+£0.19 19.41+£2.80 || 33.01£1.65 24.61x1.11
CODA-Prompt [33] 86.35+£0.20  8.99+0.71 43.35+0.29 21.76£2.45 || 31.40+0.36  30.54+2.63
LGCL [7] 87.32+0.10  7.58+0.06 - - 33.56x0.31 24.37+0.56

- Sim-ComplLer || 88.38+0.08 8.01+0.42 || 45.70+0.68 20.06+0.62 || 33.30+0.10  30.31+0.03
ComplLer 89.21+0.24  7.26+0.60 || 46.48+0.26 19.27+0.75 || 34.43+0.07 28.69+0.82




Experiments

* ComplLer consistently outperforms all competitors on state accuracy and HM
simultaneously.

* The prompt-free methods achieve higher accuracy in state prediction than object
prediction for Split-Clothing. This contrast 1s because the states in Split-Clothing
are color-related descriptions, which are easier to capture with the help of
parameter fine-tuning.

Datasets Split-Clothing (5 tasks) Split-UT-Zappos (5 tasks) Split-UT-Zappos (10 tasks)
Metrics State Object HM State Object HM State Object HM
Upper Bound 97.44+0.08 97.09+0.10 97.26+0.08 || 75.10+0.10 88.13+0.03 81.90+0.06 || 75.10+0.10 88.13+0.03  81.90+0.06

“EWCTI0] || 86.49+0.97 52.72+1.30 67.50+0.97 || 47.95+1.26 76.53+0.91 58.90+0.53 || 39.29+2.69 67.64+1.97 49.69+2.30
LwF [16] 87.11£0.66 54.57+£0.69 67.10+0.33 || 53.13+£1.08 75.48+0.82 62.35+0.31 || 38.70+2.33 68.90+£1.97 49.54+1.30
1CaRL [32] 91.21£1.05 71.70£0.99 80.28+0.74 || 51.71£0.95 75.03£0.49 61.22+0.78 || 38.94+£2.01 67.10£1.05 49.27+1.58

CL2P[43] || 83.03+£0.42  95.56+0.57 88.85+0.16 || 52.20+2.92 79.05+£0.01 62.87+1.61 || 42.66+0.87 76.60+0.03  54.80+0.55
Dual-Prompt [42] || 90.77+£0.25 94.18+0.31 92.45+0.20 || 52.25+£0.77 77.46+£0.05 62.40+0.34 || 44.34+1.61 77.92+0.37 56.51+1.11
LGCL [7] 91.45+0.20 94.87+0.33 93.13+0.10 - - - 43.444+0.79 78.64+0.64 55.96+0.43

~ Sim-CompILer || 91.15+£0.10  96.32+£0.02  93.66+0.02 || 55.93+1.23 79.69+0.06 65.72+0.53 || 45.88+0.38 75.72+0.67 57.14+0.06
ComplLer 91.81+0.23  96.67+£0.01 94.18+0.06 || 56.85+0.34 79.56+£0.04 66.31+0.15 || 46.27£1.56 76.65£1.19 57.69+0.42




Analyzing multi-pool prompt learning

* The inclusion of primitive prompt pool yields consistent gains over the baseline.
* The best results are achieved when the model integrates all three pools

simultaneously.
Prompt Pool Split-Clothing (5 tasks)
C S O Avg Acc FTT(]) HM
v 80.22+0.41 14.23+0.44 88.85%0.16
v v | 88.10+0.11  7.79£0.04  93.55+0.04
v oV 88.09+0.50  7.26+0.54  93.52+0.13
v v v | 88.38+0.08 8.01£0.42  93.66+0.02




Analyzing object-injected prompting & GeM

* S—0 exhibits a decrease 1n all metrics, implying that state prompts may interfere

with the selection of object prompts.
* O - S outperforms the None model as we expect.

* GeM performs better than both max and mean pooling across various metrics.
It validates the benefit of GeM on mitigating irrelevant information in the selected

prompts.
(a) Object-injected state prompting. (b) Prompt fusion method.
Dataset Split-Clothing (5 tasks) Dataset Split-Clothing (5 tasks)
Metrics Avg Acc FTT(]) HM Metrics Avg Acc FTT() HM

None | 88.45+0.10 7.93+0.11 93.70+0.03 Max 84.70£0.64 12.24+2.25 91.54+0.30
S—0 | 88.27£0.02 7.99+0.05 93.67+0.01 Mean | 87.80+0.12  7.82+0.01  93.38+0.03
O—S | 89.21+0.24 7.26+0.60 94.18+0.06 GeM | 89.21+0.24  7.26+0.60 94.18+0.06




Analyzing loss function

* Baseline model (first row) includes all modules but is trained by cross entropy

loss only.

* ComplLer achieves the best results when combing all the loss terms during

training.

Loss function

Split-Clothing (5 tasks)

Split-UT-Zappos (5 tasks)

LC’E ERCE 'Cinte'r /:'int'ra AVg Acc FTT(i) AVg Acc FTT(i)
v 88.17£0.08 8.08+0.27 | 44.83+£0.15 19.49+2.93
v v 88.36+0.37 8.33x0.11 | 45.47+£0.07 20.14+0.43
v v 88.32+0.56  7.82+0.64 | 45.58+0.04 19.64+0.37
v v 88.42+0.30 8.23+0.06 | 45.62+0.13 20.13x+0.14
v v v 88.61+0.61 7.72+0.87 | 46.01£0.69 19.50+0.86
v v v v 89.21+0.24 7.26+0.60 | 46.48+0.26 19.27+0.75




Qualitative results

* (a) shows a decreasing trend in composition accuracy along with the introduction

of new tasks.

* (b) and (c¢) showcase that the primitive accuracy occasionally increases as more

tasks are learned.

* We conjecture the reason is mostly attributed to the re-occurrence of primitive

concepts.
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Qualitative results

* Comparison on composition predictions between ComplLer and L2P.
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Summary

New Tasks: Compositional
Incremental Learning

.

New model: Compositional

Incremental Learner

New Metrics: State, Object
and HM

New Benchmarks: Split-
Clothing & Split-UT-Zappos

Code at https://github.com/Yanyi-Zhang/CompILer



