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Review of the Overparameterized Non-

convex Matrix Sensing

Matrix sensing aims to recover an unknown low-rank matrix M € R"»*"
from its linear measurement b = A(M )by solving the following
optimization problem

1
1 UV):==-||AUVT") —bl?
UGR“XI?}XI}@R“de( V) 2”"4( ) |7,

where rank(M) = r < n, of particular interest is the case
whered > r.
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Review of the Overparameterized Non-
convex Matrix Sensing

Matrix sensing aims to recover an unknown low-rank matrix M € R"»*"
from its linear measurement b = A(M )by solving the following
optimization problem

. 1
min f(U, V) := §||«4(UVT) - b|%,
UERnXd‘,VERﬂ‘Xd

where rank(M) = r < n, of particular interest is the case

where d > r. The problem is challenging due to the following reasons:
@ The optimization problem is non-convex and non-smooth;

(@ The saddle points can slow down the converges of the

gradient based algorithms;
@ Overparameterization can further degenerate the convergence
of GD from linear rate to sub-linear rate;
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Review of the Overparameterized Non-
convex Matrix Sensing

The results in Table 1 and Figure 3 illustrate the performance of
current gradient-based methods on this canonical problem.

Table 1: Comparisons of iteration complexity, with
k as the condition number of the n X n matrix.
“init.” denotes initialization.

Algorithm init. iteration complexity
GD [20] random | x'!log(k?/n) + k10 log(k®/¢)
PrecGD [15] spectral log(1/¢)
ScaledGD())[21] | random log k - log(kn) + log(1/e¢)
AGN random log(1/e)
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Review of the Overparameterized Non-
convex Matrix Sensing

The results in Table 1 and figure illustrate the performance of
current gradient-based methods on this canonical problem.
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Figure 1: Comparison of convergence for PrecGD, GD, and AGN across various condition
numbers, with the right subfigure extending the left by iterat- ing from 300 to 1000.
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Approximated Gauss-Newton method(AGN)

matrix sensing (LRMS) into a single, simplified expression:

min $(X) = L|APXXTQ) - b|2

X eRanx B
whereP = [[ 0] € R™*?" @ = [?] € R*" and I € R™*"is the
identity matrix. The case X = [g] with € R™*" andV € R™"*"

corresponds to the asymmetric matrix sensing.
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Approximated Gauss-Newton method(AGN)

We unify the formulation of sym'metric'and asymmetric low rank
matrix sensing (LRMS) into a single, simplified expression:

min Y(X) := %HA(PXXTQ) - b3

Xe]RQ’n.Xd

By employing the Gauss-Newton method, one can update the variable

as Xt_|_1 = Xt —+ nA(Xt)Where

1
A(X;) = arg o §||B(A, X;) + B(X;, A) + B(Xy, X;) — b3
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Approximated Gauss-Newton method(AGN)

By employing the Gauss-Newton method, one can update the variable

as X;11 = X; + nA(X;) where

1

A(Xt) =arg mn — HB(A, Xt) + B(Xt, A) + B(Xt, Xt) — b“%
AeRZ'nXd 2

We apply a Gauss-Seidel method to solve the above least square

problem as

) 1
X1 = Xi +0A(Xy), A(X;) =arg min S||IB(A, X;) + B(Xy, X;) - b3,
2 AcR2nxd 2

.1
Xiy1 = Xt-|—% + nA(XH%), A(Xt+%) = argAenﬁR}glle §|‘B(Xt—|—%: A) + B(Xt+%:Xt—|—%) - bl3.
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Approximated Gauss-Newton method(AGN)

Thanks to the RIP condition of the LRMS problem, one can
approximate the Gauss-Newton direction by the following

. 1. )
A(X;) =arg” min C[IB(A, X;) — A"(B(Xy, Xi) = )I7

ER2nXd

= ) 1. .~ .
A(Xt+§) = arg" Aéﬁ%ﬂxd §||B(Xt+%,A) —A (B(Xt+%9Xt+%) - b)|l%,

where B(A, X,;) = PAX, Qand B(X, +1,A)=PX, 1 ATQ arg*
denotes the minimum norm solution.
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Approximated Gauss-Newton method(AGN)
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‘Lemma 1. (Descent lemma) For asymmetric matrix sensing, as long as 0 < 1 < 2/(1 + 6) and the
' Assumption 1 is satisfied, then there exists positive constant £ = (2n — (1 + 0)n*) /2 such that

$(Xpe1) <(X) — LBAXL), X%,
] $(Xer1) S(Xpp1) — LB, 11, AX, )

A S
- o o - e - e

T I T T e T T T T T R T R e R e e N T R U R T O T T O N R N R U T U T T T T T T T T T T T T

/ Lemma 1 suggests that AGN with a constant step-size is indeed a b
descent method for the overparameterized LRMS.
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Approximated Gauss-Newton method(AGN)

U
U

There are two different ways to deal with symmetric MS, by symmetric

The caseX = { } correspons the the symmetric matrix sensing.
parameterization X € C or asymmetric parameterization X ¢ R2nX4

where

G= {Z|Z = [g] U e R”Xd} C RZnxd

and the update is given by

N o .
A(X,) = arg min - | B(A, X,) — A"(B(X, X,) — b)|[3
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Approximated Gauss-Newton method(AGN)
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Figure 2. Convergence of AGN under Sym. and Asym. parameterization of
symmetric LRMS.
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Saddle point analysis

We consider the population risk of the LRMS problem as solving the
following problem

1
in —||PXX"TQ — M|?
cdin S Q — M3

The objective function corresponds to g(U, V) = 3||[UV' —_M||%T
where 7 €¢ R"*4 andV € R™*¢. The saddle point of the non-
convex objective is denoted by (Us, V,;) € S where Sis defined as

S = {(Us, Vu)|UsV, = dM(E)T', M = 5T, M € M/T}

where M = &YW Tis the SVD of the matrix M.
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Saddle point analysis

We now establish the following theorem to characterize the saddle
point analysis.

l’I‘heorem 1. Assume that M is rank-1, the point (U, V) with U = U, + eN,,V =V, + eN, s

, at the vicinity of the saddle point (U, V) € S and ¢ is sufficiently small, N,, and N, are random\
I Gaussian matrices that follow a standard normal distribution. Then with high probability we have
I the following results

(GD)  [IVglE = ole)es + o(e?),

|
|
|
|
AT — 1
i acny (180T IR = 0()e, + o),
: Vg9 (UT0) 72 1F = ©(1)es + o(e?),
. where e, = |U,V,] — M||%. Furthermore, by constraining M to be positive semi-definite and
: U =V, Us = Vs (for symmetric matrix sensing), for bounded constant ¢ > 0, we have
2

\ T ) £l 2

ScaledGD(A ~(U"U+ A1 =0 | —— ) e : /
\ GekdODO) Ve @O AR =0 (G e o

Globle Q-linear Gauss-Newton Method for Overparameterized Non-convex Matrix Sensing



Saddle point analysis

We now establish the following theorem to characterize the saddle
point analysis.
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Figure 3: lllustration of the gradient norm for GD, PrecGD, and the proposed AGN, with the
right subfig- ure showing a zoomed-in region of the left for iterations from 100 to 500.
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Main results

We now present the convergence result of the proposed AGN method.

Theorem 2 (Global Q-linear convergence). Under the Assumption 1 and Assumption L Let ¢* be I
the global minimal value of 1 (X) in Eq. (6) and X,Vt > 0 is generated by Algorithm I, then there |
exists constants 1 > 7 > 0 such that ;

|
|
|
|
: Y(Xiq1) — V" < cg[Y(Xy) — 9], VE >0, (24)
|
\

|

i
where c, = (1—@%7_27) < land !l =2n— (14 &)n2 Meanwhile, if § = 0,1 = 1, ¢, becomes 0. :
\—._________________________________.______________________________________________________’/
s T T T T T - - - --=-"=-"=-"=""=""=""=/-"=-"=-""=/-"¥"=/"¥"”/"=¥°/ "¥=¥"=-/ "= ¥ - ¥"=-""=-"=-"=-"=-"=-""=/-"=”-"=-""=-""=-=-7= =S\
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Main results

We now present the convergence result of the proposed AGN method.

Theorem 2 (Global Q-linear convergence). Under the Assumption 1 and Assumption @ Let ¢* be I
the global minimal value of 1 (X) in Eq. (6) and X,Vt > 0 is generated by Algorithm I, then there |
exists constants 1 > 7 > 0 such that :

I
1
1
l
: ¢(Xt+1) — 'lrb* < CQ[w(Xt) _ ¢*]:Vt > 0: (24)
|
\

|
|
71—4 ) 2 g . I
where cq = (1 — £1757) < Land £ = 2n — (1 + &)n*°. Meanwhile, if 6 = 0,m = 1, cq becomes 0.
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Figure 1: Comparison of convergence for PrecGD, GD, and AGN across various condition
numbers, with the right subfigure extending the left by iterat- ing from 300 to 1000.
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