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Instrumental Variable Regression
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Instrumental Variable Regression

[ Estimate 8" with streaming data? ]

Traditional Two-stage Method

Stage 1. Regress X on Z, obtain X = E[X|Z]
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— X = E[X|Z]

Caution: Model misspecification!

Stage 2. Regress Y on X (X is uncorrelated with €)
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IVaR: An Optimization Viewpoint
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Squared Loss = he=(Z) =

6 No explicit X — Z model. No X — Z misspecification
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Challenges

/\ Unknown inner expectation

/\ Streaming data, can’t estimate x1zL9 (X))

/N\ Biased Gradient VE(0;, W) = (g(0:; X;) — Yi)Vog(0s; X;)

Our Contribution I: Two-sample Gradient Estimator
Sample: Z; ~ P(Z), independent X;, X; ~ P(X|Z,), Y: ~ P(Y|X;)
VEOu, X, X0, Y, Zy) = (9(0; X)) — Yi)Veg(0y; X[) (Unbiased)

9t+1 =0, — at+1vF(9ta X, X£7 Y:, Zt)

Theorem. (Squared Loss) Assumptions: Identifiability, bounded moment, i.i.d data

stream. Set oy = o = IZgTT.
0o — 0.7 | 3]|0.°(01(ds d2) + 05(dy, ds)) log T
E9—9*2<H0 | 1 \Wxy Uz 2\Wg, Wz |
oz — 0.7] < 2 o
(General Loss) Additional Assumptions: {-Smooth F', bounded iterates. Set o, =

a=0(%)

min 2 (IVFO)) =0 ().

Takeaway: (IVaR-Opt) is solvable with the two-sample unbiased
gradient estimator, avoiding matrix inversion and explicit X-Z modeling.

Our Contribution Il: One-sample Gradient Estimator
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Potentially < 0 == Potential instability near bad initialization
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Theorem. (Squared Loss) Assumptions: Linear models, i.i.d data stream, bounded
iterates, ¥; = 0, bounded second moment. Set o, = C,(d,)t '1"2 and B, =
Cy(d,)t~1*"/2. Using one sample (X,,Y;, Z,) at time t, for any v > 0, we have

{1617 =0 (5 )

Takeaway: Linear IVaR is solvable with the one-sample-based gradient
estimator by carefully controlling the bias, avoiding matrix inversion.

Simulation: Two Sample
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Simulation: One Sample
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X=0'2)P+ch+e), Y=0X+clhi+e,) h~NQa,ls,) Z, ez, €, ~ Standard Normal

¢=0.1 (dy,d.) = (8, 16) c=1 (dod)=(816)
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Data Example |, One Sample: Children and Their
Parents’ Labor Supply Data in [AES6]

Y = number of working weeks divided by 52, X = [(number of children is greater
than 2), Z = I(first two siblings are of same sex), 8, = Offline estimate
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[OTSG—IVaR converges
faster, and doesn’t
_plateau y

Data Example Il, One Sample : U.S. Portland Cement

Industry Data in [Ryal2]

7Z = (Wage for skilled workers, electricity price, coal price, gas price),

Y = log(shipped), X = log(price)
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