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Motivation
Using visual representations from a pretrained encoder, we analyzed features with PCA, revealing 
“Visual Anchor” phenomenon. From this, we developed Anchor Former as an optimized visual-language 
connector, reducing inference latency and enhancing model generalization for high-performance Vision-
Language tasks.
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Method
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Visual anchoring refers to specific background tokens that, as visual signals transform within the ViT, 
become high-norm tensors. These tokens often receive greater attention from the classification head and 
the CLS token, highlighting their significance in visual perception tasks.



Method
Based on these observations, we propose that visual anchors function as local information extractors 
during visual feature transformations, transmitting localized signals to the global representation through 
multiple visual anchors. Accordingly, we introduce the Anchor Former architecture, as illustrated below.
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Method
We propose to use the top-k method to select the visual anchors with the CLS token’s attention map.

Input: 
Visual Feature Map V (B, N, D)
Visual Attention Map A (B, H, N, N)
Token Number T
Caculation:
selected_anchor = None
Per_head_num = int((T-1) / H) #[CLS] is choosen by default
for i in range(B):
   max_indice = [0]
   for j in range(H):
      tmp_attn = A[i, j, 0, 1:]
      ind_sorted = Argsort(tmp_attn) + 1
      tmp_res = set(ind_sorted[-Per_head_num:] + max_indice)
      count = 1
      while len(tmp_res) < ((j+1) × per_head_num + 1) :
         tmp_res = set(ind_sorted[-Per_head_num-count:] + max_indice)
         count = count + 1
      max_indices = sorted(list(tmp_res))
      if selected_anchor is not None:
         selected_anchor = torch.cat((selected_anchor, V[[i], max_indices, :]), dim=0)
      else:
         selected_anchor = V[[i], max_indices, :]
Return:
selected_anchor

Algorithm: Anchor Selection
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Experiment
We evaluated our method across various benchmarks, with results demonstrating exceptional 
performance in both computational efficiency and accuracy.
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Experiment
We also provide ablation studies with other token reduction method.




