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Inductive vs deductive reasoning

“Induction is the starting-point which knowledge even of the universal 
presupposes, while syllogism proceeds from the universals.” 

--- Nicomachean Ethics

Observations Laws (axioms)Induction:

Deduction: Laws (axioms) Theorems

?

logically



The problem of induction

“There can be no demonstrative arguments to prove, that those 
instances, of which we have had no experience, resemble those, of 
which we have had experience.”

--- A Treatise of Human Nature

Without assumptions, there is no rigorous induction on unseen events.

…
Rare event?



Example: evolution of physical models

Legit until proven wrong!

Single basic element Four basic elements Classical mechanics Quantum mechanics



Can we identify the true physical model?      

With assumptions on the candidate set of models.  

Can we make few errors in pursuing it? 

Let’s consider a weaker criterion.
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Inductive Inference

• Given domain 𝑋, hypothesis class 𝐻 containing binary functions.

• Nature selects the ground-truth ℎ∗.

• For 𝑡 in 1,2, ⋯ 

• Nature presents 𝑥𝑡 to Learner.

• Learner predicts 𝑦𝑡.

• Nature reveals the true label ℎ∗ 𝑥𝑡 .



A sufficient condition

Hypothesis class: the set of all Turing machines. (countable size)

Assign larger prior weights to Turing machines with shorter description lengths.

It was proven in the 60s, that when the size of 𝐻 is countable, we can guarantee 
only a finite number of errors is made.

Example: Solomonoff Induction



Basic idea: Bayesian

At time 𝑡, the learner find the hypothesis ℎ𝑖𝑡
.

ℎ𝑖𝑡
 has the smallest index 𝑖𝑡, among hypotheses consistent with history.

The learner then predicts with ℎ𝑖𝑡
.

Every error will increase 𝑖𝑡 𝑇∗ is always legit

The learner makes at most 𝑇∗ errors



It’s not necessary!

Consider 𝐻 = {𝑓𝑐|𝑓𝑐 𝑥 = 1𝑥=𝑐 , 𝑐 ∈ 𝑅}.

This class has an uncountable size.

However, we make at most one error, by keep predicting zero.

If we make an error, we immediately identify the ground-truth.



Question: what’s a sufficient and necessary condition?

Theorem (informal) Inductive inference is possible, iff 𝐻 is a countable 
union of online learnable classes.

We obtain this result by a new link to online learning.



Online learning (Littlestone, 1988)

• Given domain 𝑋, and hypothesis class 𝐻.

• For 𝑡 in 1,2, ⋯ 

• Nature presents 𝑥𝑡 to Learner.

• Learner predicts 𝑦𝑡.

• Nature selects ℎ𝑡
∗ consistent with history: ∀𝑖 ≤ 𝑡, ℎ𝑡

∗ 𝑥𝑖 = ℎ𝑖
∗ 𝑥𝑖 .

• Nature reveals the true label ℎ𝑡
∗ 𝑥𝑡 .



A class 𝐻 is online learnable, if there exists a uniform constant 𝑚 and an algorithm, such 
that for any Nature’s choice, the algorithm makes at most 𝑚 errors.

We denote the min-max number of errors as the Littlestone dimension.

It’s similar to VC dimension, but only requires shattering every branch of a tree.



Example: rational thresholds

Consider 𝑋 = 𝑅, and 𝐻 being the set of all rational threshold functions:

𝐻 = {ℎ: ℎ 𝑥 = 1𝑥≥𝑐 , 𝑐 ∈ 𝑄}

It has a countable size, thus learnable in inductive inference.

However, it has an infinite Littlestone dimension, thus not online learnable.

Nature can enforce an error in each round in online learning.



𝑥 = 0, 𝑦 = 0 𝑥 = 1, 𝑦 = 1𝑥1 =
1

2
, 𝑦1 =?

1 0

𝑥2 =
1

4
, 𝑦2 =? 𝑥2 =

3

4
, 𝑦2 =?

Each round, Nature can choose the opposite label.

⋯
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Non-uniform online learning

It’s a variant of classic online learning. Two changes:

• It requires Nature to fix ℎ∗ in advance.

• It allows non-uniform error bounds depending on ℎ∗.

It is inductive inference without the size constraint on 𝐻.

It’s a generalization of non-uniform PAC learning to the online setting.



Inductive Inference = Non-uniform Online Learning

• Given domain 𝑋, hypothesis class 𝐻 containing binary functions.

• Nature selects the ground-truth ℎ∗.

• For 𝑡 in 1,2, ⋯ 

• Nature presents 𝑥𝑡 to Learner.

• Learner predicts 𝑦𝑡.

• Nature reveals the true label ℎ∗ 𝑥𝑡 .



Non-uniform online learnability

Definition A class 𝐻 is non-uniform online learnable, if there exists an algorithm 𝐴, 

∃𝑚: 𝐻 → 𝑁, ∀ℎ ∈ 𝐻, ∀𝑥 ∈ 𝑋∞, 𝑒𝑟𝑟_𝐴(𝑥, ℎ) ≤ 𝑚(ℎ).

If 𝐻 has a countable size, it’s reduced to classic inductive inference.

Notice here the error bound can vary with the ground-truth ℎ∗.



Non-uniform stochastic online learning

In non-uniform online learning, Nature can adaptively choose 𝑥𝑡.

An easier yet natural setting: Nature can only choose a distribution, each 𝑥𝑡 is iid.

Definition We say a class 𝐻 is non-uniform stochastic online learnable, if there exists an 
algorithm 𝐴, such that

∃𝑚: 𝐻 → 𝑁, ∀ℎ ∈ 𝐻, ∀𝜇, 𝑃𝑥∼𝜇∞ 𝑒𝑟𝑟𝐴(𝑥, ℎ) ≤ 𝑚 ℎ = 1.



Outline

• The problem of induction

• Background

• Non-uniform online learning

• Characterizing inductive inference

• The agnostic setting

• Conclusion



A tight characterization

Theorem (main result) 𝐻 is non-uniform online learnable, if and only if it’s a 
countable union of Littlestone classes.

The proof is simple and standard. It leverages the structural risk minimization 
technique from Vapnik and Chervonenkis 74.



The learning algorithm

Index: prior                                                        Error bound: posterior

𝐽𝑡 is the index minimizing error bound plus index.



Proof sketch

The If direction:

• A uniform error bound is achievable iff 𝐻 has finite Littlestone dimension.

• 𝐴𝑛 learns class 𝐻𝑛 with at most 𝑑𝑛 errors.

• Suppose ℎ∗ lies in 𝐻𝑘, then  𝐽𝑡 ≤ 𝑒𝑘 + 𝑘 ≤ 𝑑𝑘 + 𝑘 for any 𝑡.

• Notice that 𝐴𝑛 will never be chosen once 𝑒𝑛 + 𝑛 > 𝑑𝑘 + 𝑘.

• As a result, only 𝐴1, 𝐴2, ⋯ , 𝐴𝑑𝑘+𝑘 can be invoked.

• Then 𝐴 makes at most 𝑑𝑘 + 𝑘 2 errors.



𝐻1 𝐻2 𝐻𝑘 𝐻𝑑𝑘+𝑘⋯ ⋯ ⋯

Will never be chosen!

ℎ∗ lies here!

Will not be chosen once made 
more than 𝑑𝑘 + 𝑘 errors.

At most 𝑑𝑘 errors.

Two cases: no error, good! If error, error bound increases.

𝑒𝑘 is bounded by 𝑑𝑘, error bound can’t increase too many times.



The Only If direction:

• For any ℎ, denote 𝑑(ℎ) as the finite error bound admitted.

• We denote 𝐻𝑛 = {ℎ: 𝑑 ℎ = 𝑛}.

• We have that 𝐻 =∪𝑛 𝐻𝑛.

• We only need to prove each 𝐻𝑛 is learnable with a uniform error bound.

• The same algorithm for 𝐻 has an error bound 𝑛 on 𝐻𝑛.



𝐻

𝐻1 𝐻2 𝐻𝑛⋯ ⋯

All ℎ with error 
bound 1.

All ℎ with error 
bound 2.

All ℎ with error 
bound n.

Every 𝐻𝑛 is online learnable.

𝐻 is the union of all 𝐻𝑛.



Adaptive 𝑥𝑡: strongest Nature.                            Distribution 𝜇: weakest Nature.

The characterization for the two settings are the same.

It implies the same characterization is also tight for any setting in between.

Theorem: 𝐻 is non-uniform stochastic online learnable, if and only if it’s a 
countable union of Littlestone classes.



Outline

• The problem of induction

• Background

• Non-uniform online learning

• Characterizing inductive inference

• The agnostic setting

• Conclusion



So far, we considered the realizable setting. Not very realistic.

A natural generalization is the agnostic setting. No restriction on Nature.

Learner’s goal is to perform as well as the best hypothesis in some class. 



Agnostic online learnability

Definition We say a class 𝐻 is agnostic non-uniform online learnable with rate 𝑟, if there 
exists an algorithm 𝐴, such that

∃𝑚: 𝐻 → 𝑁, ∀𝑥 ∈ 𝑋∞, ∀𝑦∗ ∈ 0,1 ∞, ∀ℎ ∈ 𝐻, ∀𝑇 ∈ 𝑁,

𝐸 ෍

𝑡=1

𝑇

1𝑦𝑡≠𝑦𝑡
∗ − ෍

𝑡=1

𝑇

1ℎ 𝑥𝑡 ≠𝑦𝑡
∗ ≤ 𝑚 ℎ 𝑟(𝑇)



The learning algorithm



Theorem When 𝐻 =∪𝑛 𝐻𝑛 is a countable union of Littlestone classes, each 
with Littlestone dimension 𝑑𝑛, then it’s agnostic non-uniform learnable at rate 

𝑟(𝑇) = ෨𝑂( 𝑇) and 𝑚 ℎ = log 𝑛 + 𝑑𝑛, for any ℎ ∈ 𝐻𝑛.

𝑟(𝑇) = 𝑂( 𝑇) and 𝑚 ℎ = 𝑑𝑛 is optimal for learning a single 𝐻𝑛.
 

Algorithm: two hierarchies of FPL.



A trichotomy

For any 𝐻, if it can’t be written as a countable union of Littlestone classes, it’s not 
agnostic non-uniform online learnable at rate 𝑇1−𝜖, for any 𝜖 > 0.

When 𝐻 > 1, 𝑟 𝑇 = Ω( 𝑇). 

Theorem There are only three possible rates of agnostic non-uniform online learning

• 𝐻 is learnable at rate 0 iff 𝐻 = 1.

• 𝐻 is learnable at rate ෩Θ( 𝑇) iff 𝐻 is a countable union of Littlestone classes.

• 𝐻 has an arbitrarily slow rate iff 𝐻 isn’t a countable union of Littlestone classes.
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Conclusion

We introduced a new framework, non-uniform online learning, as a general form of 
inductive inference.

We show that inductive inference is possible, if and only if the hypothesis class is a 
countable union of online learnable classes.

This characterization is proven tight across many settings.



Future directions

A weaker criterion is consistency, allowing error bound 𝑚 to depend on 𝑥 in addition. 

We obtain a necessary condition and leave a tight characterization as future work.

Our learning algorithms are uncomputable, which is unavoidable in general. 

Can we build computable learner to achieve approximation results?



Thank you!
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