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3D occupancy – a unified scene representation

• Depict scene in both geometric and semantic aspects

• Not limited to foreground-only representation (vs. 3D object detection) and sparse data formats 
(vs. point cloud segmentation)

• Open-set depiction of scene geometry: out-of-vocabulary items (e.g., animals) and irregular 
shape (e.g., cranes)
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Current research gap

• Current works on 3D occupancy prediction predominantly utilize either LiDAR point clouds or RGB 
images, or a combination of both,  overlooking the 4D imaging radar data.
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Why single-chip mmWave radar

• Robust to adverse weather (e.g., fog, dust, snow) and illumination (e.g., darkness and sun glare)

K-RADAR DATASET

Optical sensors (i.e., camera, LiDAR) can 
not see through airborne particles. 

RGB camera LiDAR point cloud



• Radar (Doppler) velocity measurement  - relative radial velocity (RRV)  

Ego-vehicle velocity

Target velocity

Relative velocity

Relative radial velocity (RRV) Phase variance across difference 
chirps contain velocity information

Why single-chip mmWave radar



• Radar-on-a-chip: low cost (vs. LiDAR) and light weight

TI AWR1642 RADAR

ARBE 4D RADAR

• Limited payload or budget

Why single-chip mmWave radar



Automotive mmWave radar – toward 4D imaging

• Need to measure elevation information to 
enable drive-over and drive-under functions

Traditional 
automotive radar 
(e.g. nuScenes)

4D imaging
automotive radar 

(e.g. view-of-delft)

✓ MIMO antenna technology
✓ Elevation measurement
✓ Higher angular/range resolution



3D occupancy prediction with 4D mmWave radar

▪ Motivation
• ‘LiDAR-inspired’ framework, i.e., relying on 4D radar point clouds, suffers from the loss of critical 

environmental signal during point cloud generation.
• For example, the surface of highway, made of low-reflective materials yields weak signals back, 

resulting in very few points being detected.

The traditional reliance on sparse radar point clouds, is not optimal for 3D occupancy prediction



Research insights

• 4D radar tensor (4DRT), as kind of raw data, preservers the entirety of radar measurements. It 
provides direct 3D measurements in a continuous data format.

• The volumetric structure of 4DRTs aligns well with 3D occupancy grids, making them ideally suited 
for advancing 3D occupancy prediction techniques.

RGB Image LiDAR Point Cloud 4DRT (reducing Doppler)



Challenges

• Substantial size – up to 500MB per frame, compromise real-time onboard processing

• Inherently noisy due to the multi-path effect and sidelobes, threating prediction accuracy

• Stored in spherical coordinates, diverges from the preferred 3D Cartesian occupancy grid 

MULTI-PATH EFFECT
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Overall pipeline

• Data volume reduction: reduce the Doppler bins into light-weight, transfer the dense RT into a sparse format
• Spherical-based feature encoding: direct encoding of RT features in the spherical coordinates 
• Spherical-to-Cartesian feature aggregation: learnable voxel queries, aggregate features with deformable attention



Notable details

• Sidelobe-aware sparsifying: mitigate the concentration of reserved elements at certain ranges

• Interpolation-free transform: from spherical 
tensor data to Cartesian occupancy prediction



Demo – 3D occupancy prediction at night

✓ In the right video, green denotes background while red denotes foreground

Prediction (RadarOcc)RGB Camera



Demo – 3D occupancy prediction in the snow 



Demo – 3D occupancy prediction in the rain



Thank you!
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