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3D occupancy — a unified scene representation

* Depict scene in both geometric and semantic aspects

* Not limited to foreground-only representation (vs. 3D object detection) and sparse data formats
(vs. point cloud segmentation)

* Open-set depiction of scene geometry: out-of-vocabulary items (e.g., animals) and irregular
shape (e.g., cranes)
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Current research gap

* Current works on 3D occupancy prediction predominantly utilize either LiDAR point clouds or RGB
images, or a combination of both, overlooking the 4D imaging radar data.
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Why single-chip mmWave radar

* Robust to adverse weather (e.g., fog, dust, snow) and illumination (e.g., darkness and sun glare)
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Optical sensors (i.e., camera, LiDAR) can

K-RADAR DATASET not see through airborne particles.
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Why single-chip mmWave radar

* Radar (Doppler) velocity measurement - relative radial velocity (RRV)
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Why single-chip mmWave radar

e Radar-on-a-chip: low cost (vs. LiDAR) and light weight

ARBE 4D RADAR
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Cost Weight Power
(%) (kg) (W)

Scan
Points

-
[
]

Lidar 8,000 0.83 8
(VLP-16)

Mechnical Custo-

Radar mized 6 24
(CTS-350)  Only

Single-chip

Radar 299 <0.03 2
(AWR1443)

e Limited payload or budget




Automotive mmWave radar — toward 4D imaging

Traditional
automotive radar
(e.g. nuScenes)

v" MIMO antenna technology
v’ Elevation measurement
v Higher angular/range resolution

* Need to measure elevation information to

4D imaging
enable drive-over and drive-under functions

automotive radar
(e.g. view-of-delft)




3D occupancy prediction with 4D mmWave radar

= Motivation
* ‘LiDAR-inspired’ framework, i.e., relying on 4D radar point clouds, suffers from the loss of critical
environmental signal during point cloud generation.
* For example, the surface of highway, made of low-reflective materials yields weak signals back,
resulting in very few points being detected.

The traditional reliance on sparse radar point clouds, is not optimal for 3D occupancy prediction




Research insights

* 4D radar tensor (4DRT), as kind of raw data, preservers the entirety of radar measurements. It
provides direct 3D measurements in a continuous data format.

* The volumetric structure of 4DRTs aligns well with 3D occupancy grids, making them ideally suited
for advancing 3D occupancy prediction techniques.

RGB Image LiDAR Point Cloud 4DRT (reducing Doppler)
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Challenges

Substantial size — up to 500MB per frame, compromise real-time onboard processing

* Inherently noisy due to the multi-path effect and sidelobes, threating prediction accuracy

* Stored in spherical coordinates, diverges from the preferred 3D Cartesian occupancy grid
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Overall pipeline
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* Data volume reduction: reduce the Doppler bins into light-weight, transfer the dense RT into a sparse format
* Spherical-based feature encoding: direct encoding of RT features in the spherical coordinates
* Spherical-to-Cartesian feature aggregation: learnable voxel queries, aggregate features with deformable attention
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Notable details

e Sidelobe-aware sparsifying: mitigate the concentration of reserved elements at certain ranges

Sidelobe-aware sparsifying (Ours) Percentile-based sparsifying
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Demo — 3D occupancy prediction at night

v In the right video, denotes background while red denotes foreground
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Demo — 3D occupancy prediction in the snow

SurroundOcc (Stereo RGB) OpenOccupancy (LiDAR PCL) RadarOcc (4DRT)




Demo — 3D occupancy prediction in the rain

SurroundOcc (Stereo RGB) OpenOccupancy (LiDAR PCL)
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RadarOcc (4DRT)




Thank you!
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