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Constrained Reinforcement Learning (CRL)

Introduction

* Real-world scenarios: reach a goal + meet structural/utility-based constraints

 Constrained RL: extension of RL with the possibility to account for constraints




Policy Gradients (PGs) for CRL

Introduction

 Continuous State and Action Spaces
 Robustness to Actuators and Sensors Noise
* Robustness to Partial Observability

* Possibility to incorporate expert-knowledge in the Policy-design Phase



Action-based (AB) Exploration

PGs Exploration Approaches




Parameter-based (PB) Exploration
PGs Exploration Approaches
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Constrained Optimization Problem
Setting

 Continuous State and Action spaces

« Multiple constraints on cost functions c;

 Both exploration paradigms are supported

e |nexact Gradients



Constrained Optimization Problem
Setting
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Constrained Optimization Problem
Setting




Constrained Optimization Problem
Setting
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C-PG

Exploration-Agnostic Algorithm

PrOJected Alternate Ascent Descent on the - Regularlzed |
‘ Lagranglan w.r.t. the Dual Variable ‘
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C-PG: Convergence

Exploration-Agnostic Algorithm

Assumptions:
1. w-Gradient Domination on parameterization (y € [1,2])

2. Regularity of &£

3. Existence of a saddle point
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C-PG: Convergence

Exploration-Agnostic Algorithm

N — : e

“:[J()(’Uk) — JO(US)] < € A gi | ;}H)\SH% and "3[(JZ(’U;€) — bz)—l_] < 4e + 4§1 | CUHASHQ , V1 € IIU]] }

Holds for both exploration approaches
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C-PG: Convergence

Exploration-Agnostic Algorithm

Exact Gradients O(e™7) O(e™"' log(e™"))

Estimated Gradients O(e°log(e™ 1)) O(e~*log(e™ 1))
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Enforcing Constraints on Risks

Risk and Exploration Agnostic Algorithms

 AB and PB explorations have a semantic difference when enforcing
constraints

 |n order to induce safer behaviors, we can enforce constraints on risk
measures

 We introduce a unified risk measure that extends the framework previously
described

 Additional parameter to learn required
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Conclusions

Our Contribution

 Framework to handle CRL with PGs (both AB and PB) in continuous spaces
and with multiple constraints

 Both approaches exhibit last-iterate global convergence to a feasible
(hyper)policy guarantees

e We extend the framework to handle risk-based constraints

 \We numerically validate our results
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