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Situation

Finetuned Adapters (i.e. LORA, textual inversion) introduce novel concepts and
styles to the base model, thereby improving image quality.

SD
vil.5

“A dark tabby cat
sitting next to a
window.”

/
[

Cat LoRA




Situation

Open-source contributors have created over 100K+ adapters!
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An Emergent Problem

e Base models are no longer good enough for generating images.

e Users manually mix and match many checkpoints and adapters to
generate the images they want.
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Stylus 7

Goal: Automatically select and compose the right adapters given a user prompt.
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Stylus 7
Goal: Automatically select and compose the right adapters given a user prompt.

Requirements:
e No training. Scales to new adapters over time.
e Performant. Must do better than existing retrieval approaches.
e Low inference overhead. Identifies the right adapters quickly.



Stylus Architecture
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Goal: Generate a vector embedding for each adapter.

How?
e \Vision Language Model (VLM) to infer adapters’ descriptions
o With adapter’s model card (author description + example images)
e Embedding Model to embed adapter description



Retriever (RAG)

Goal: Retrieves the most relevant candidate adapters via similarity metric.

Problem: RAG lacks precision. Easy to add slightly relevant adapters.
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Composer

- Composer
Goal: Significantly improves precision for retrieving Below i3 an ordered List of adaper ;
escriptions based on relevance:
the rlght adapters_ #0: This LoRA generates huskies..
#842: This LoRA dintroduces the style
of Christmas cards..
#3: This LoRA generates snowboards..
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Evaluation

e Prompt Datasets e Base Models
o COCO 2014 o RealisticVision (SD v1.5)
o PartiPrompts o CounterFeit (SD v1.5)

e Adapter Database
o StylusDocs v2
m Adapters from Civit Al + Huggingface.
m 75K generated adapter descriptions from GPT-40.

e Evaluation
o Human Evaluation

o FID/CLIP Pareto Curve
o VLM as ajudge
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Human prefer Stylus 2x more than the base model.

Counterfeit-v3 / PartiPrompts

58.57%




CLIP/FID Pareto Curve

FID Score (10K)
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Stylus improves pareto efficiency for the CLIP/FID curve.



Vision Language Model (VLM) as a Judge
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VLM believes Stylus generates higher quality and diverse images.



Ablations

CLIP (A) FID (A) CLIP (A) FID (A)
Stylus 27.25 (+0.03) 22.05 (-1.91) No-Refiner 2491 (-2.31) 24.26 (+0.30)
Reranker 2548 (-1.74) 22.81 (-1.15 Gemini-Ultra Refiner 27.25 : 22.05 )
Retriever-only  24.93 (-2.29) 24.68 (+0.72) GPT-40 Refiner 28.04 (+0.82 21.96 (
Random 26.34 (-0.88) 24.39 (+0.43) SDvl1.5 27.22 23.96
SDvl.5 27.22 23.96
Retrieval Methods. Refiner.

Stylus (with composer) is necessary.

Retriever-only (RAG) hurts end2end
performance.

Better adapter descriptions lead to much
better performance.



Conclusion

Stylus automatically selects and composes adapters given a user prompt,
improving image fidelity and textual alignment.

Our Contributions
e StylusDocsv2: a 75K entry dataset for adapter descriptions
e Stylus’s composer is the first to use an LLM to improve retrieval methods,
outperforming rerankers.
e Among the first to employ VLM as a judge for evaluation.



