Generative Adversarial Model-Based Optimization
via Source Critic Regularization

Challenges of Offline Generative Design

In real-world tasks like molecule and robotic design, optimizing
objective functions can be costly or impractical. To address this,
recent work explores offline policy optimization, leveraging prior
observations to find the best designs without ever having access
to the objective function. However, offline methods often struggle
with the distribution shift between the distribution of the design-
generating policy and the offline observations. To overcome this,
we introduce a generative adversarial model-based
optimization (GAMBO):. task-agnostic approach to reliably
optimize against an offline surrogate model for generative tasks.
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Problem Formulation

Model Based Optimization
We consider the class of problems of the form
X" = argmax f (X)
xeX
In settings where the oracle function f is expensive to evaluate,

we can instead learn an offline surrogate model f; from a
dataset of prior observations D,, = {(Xy, yx)}r=1 and instead solve
the related problem
X" = argmax fy(x)
xeX
How “reliable” is the surrogate model fy, over X'?

The Wasserstein Distance is a measure of similarity between
probability distributions commonly used in generative models. We
use the Wasserstein distance as a proxy for how similar
generated designs are to previously observed designs.
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Our Approach: Constrained Optimization

We formulate a constrained MBO problem according to

minimize,ey —fo(X)
subjectto  Eyrep [c"(X)] —c"(x) <0

where c*(x): X > R is a source critic function used to
approximate the Wasserstein distance between the generated
and offline designs. In other words, we seek to maximize fg over
the feasible search space of designs that are at least as in-
distribution as the average design in the offline dataset D,,.

We use an augmented Lagrangian approach from standard
convex optimization theory. That is, our modified objective is

x* = argmax L(x; 1)
xeX

where L(x; 1) is the Lagrangian

L) = fp(x) = AEyrep, [c*(x)] — c* (X))
The parameter A balances the tradeoff between maximizing

against fg and staying in-distribution with respect to D,,. Our
algorithm GAMBO automatically calculates the optimal value of 1!

In theory, GAMBO can be leveraged with any offline
optimizer. We leverage GAMBO for Bayesian optimization (i.e.,
GABO) and gradient ascent (i.e., GAGA) in our experiments.

Experimental Evaluation

We evaluate GABO and GAGA against state-of-the-art offline
optimization algorithms on the following generative design tasks:
1. Branin: Design points to maximize the Branin function.
2. Molecule: Design molecules with maximal penalized
LogP score (a metric of molecule hydrophobicity).
3. TF-Bind-8: Design an 8-bp DNA sequence maximizing
the binding efficiency with a particular transcription factor.
4. GFP: Design proteins with maximal green fluorescence.
5. UTR: Design a 5'UTR sequence that maximizes the gene
expression of the encoded protein.
6. ChEMBL: Design a molecule with maximal predicted
bioactivity according to a specific assay.
7. D’Kitty: Design a D'Kitty robot for optimal navigation.
8. Warfarin: Design the optimal warfarin dose for a patient
based on clinical and pharmacogenetic variables.
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Method Branin LogP TF-Bind-8* GFP~ UTR* ChEMBL" D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 + 1.96 —
Grad. -245.1+£81.3 -537+1.44 0429+0.023 3.18+ 088 6.82+0.21 -1.95+0.00 057+0.19 0.86+1.09 9.0
L-BFGS -29.6 + 0.0 3.82+326 0527 +0.140 3.51+0.70 648+1.20 -1.95+0.00 0.31+000 0.73+1.83 8.5
CMA-ES -8.6 + 3.6 504 +6.83 0438+0.131 1.43+0.00 6.39+0.11 -195+0.00 0.31+0.00 -25.0+150 10.6
Anneal -96+1.5 876 £0.15 0.807 £0.094 3.64+0.03 5.01+£031 -1.95+0.00 0.55+0.18 0.91+0.08 6.8
BO -11.0+7.8 -525+88.8 0.586+0.193 143+000 565+130 059+0.10 0.61+0.15 0.16+1.67 8.8
TuRBO -21.0 £ 5.1 -45.1 £93.8 0.564 £0.194 143+0.00 6.53+1.19 0.65+0.00 0.44+0.18 0.05+0.11 9.0
BONET -26.1 £ 0.9 10.8 +£0.33 0.282+0.000 3.74+0.00 9.12+0.07 0.55+0.13 0.78+0.00 5.7

DDOM -6677 £ 6360 -423+1.28 0.460+0.030 1.43+0.00 556+0.02 054+0.15 051+020 -032+0.40 11.1
COM  -3099 + 32.6 30.8 £19.5 0.439+0.000 3.62+0.00 6.65+0.43 0.63+0.01 0.90+0.02 0.72+0.97 5.5
RoMA  -32.7 + 18.4 6.37+139 0433+0.040 337+027 6.66+098 050+0.14 030+0.27 -0.70+0.02 94
BDI -1050 £ 0.0 -0.20 +£0.00 0.311 £0.000 3.26 +0.82 5.61+0.00 048+0.00 0.67+0.00 -248+233 10.8
ExPT -57.2+ 38.6 -159+241 0571 +£0.076 143+000 6.77+138 056+0.06 066+020 -346+614 9.1
BootGen — -13.0+15.1  0.942 +£0.022 3.10+0.73 8.30+0.93 0.59 £ 0.07 — — 6.2
ROMO -2614+739.9 -205+19.2 0.382+0.203 355+0.13 573+142 0.65+0.00 0.64+027 -071+210 9.6

GAGA -29+2.2 -68.6 £ 109.8 0571 +0.120 3.74+0.00 589+142 -195+0.00 0.89+0.00 0.01+0.14 7.4
GABO -2.6 + 1.1 21.3+33.2 0570+0.131 3.60+040 7.51+0.39 0.60+0.07 0.71+0.01 0.60+1.80 3.8

Table 1: One-Shot Oracle Evaluation. We show one-shot design
scores (higher is better) on 8 real-world offline optimization tasks.
Average rank (lower is better) shown in the right-most common.

Dataset BO-gEI
11.3 -11.4

Penalized
LogP Score

Figure 1: Example Proposed Molecules. GABO designs
molecules that outperform previously observed molecules and
molecules performed by other optimization algorithms.

Discussion and Conclusion

GAMBO dynamically adjusts the regularization strength according to
the optimization trajectory. When designs are in-distribution,
GAMBO relaxes the constraint to explore more of the design space.
When designs start to look “wacky,” GAMBO tightens the constraint
to stay more “in-distribution.”

What's next?

1. Can we generalize our dual optimization approach?
2. Can GAMBO be used for other tasks, like RHLF and LLM

preference optimization?
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Simulations and surrogates aren't perfect!

=== Qracle Objective
— Fitted Surrogate Model
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How can we measure offline distribution shift?
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How can we measure offline distribution shift?

minimize, ¢ —fo(2)
subjectto [E_i-plc*(z')] —c*(2) <0

—fo(2) E,replc™(2)] = c™(2)
How do we balance this tradeoff?
Propose a design Propose a design

that maximizes that “looks like”
the surrogate other designs

Generative Adversarial Model- 53:?§E;$AL.NFORMAT.ON
Based Optimization (GAMBO) -.j-i;%PRocessme SYSTEMS



How can we measure offline distribution shift?

Method Branin LogP TF-Bind-8~ GFP” UTR" ChEMBL" D’Kitty Warfarin Rank
D (best) -13.0 11.3 0.439 3.53 7.12 0.61 0.88 -0.19 + 1.96 —
Grad. -24514+81.3 -537+144 04294+0.023 3.184+0.88 6.82+0.21 -195+0.00 0.57+0.19 0.86+ 1.09 9.0
L-BFGS -29.6 = 0.0 382+ 326 0527 +0.140 351 +0.70 648 +1.20 -1954+0.00 0.31+0.00 0.73+1.83 8.5
CMA-ES -8.6 £+ 3.6 5.04 683 0438+0.131 143+0.00 6.39+0.11 -1954+0.00 031000 -25.0£150 10.6
Anneal -9.6 £ 1.5 8.76 = 0.15 0.807+0.094 364+0.03 501+031 -1954+0.00 055+0.18 0.91 +0.08 6.8
BO -11.0 + 7.8 -52.54+88.8 0.586+0.193 143 +0.00 565+1.30 059+0.10 0.61+0.15 0.16 +1.67 8.8
TuRBO -21.0 = 5.1 -451 +£93.8 0.564+0.194 143 +000 6.53+1.19 0.65+0.00 044 +0.18 0.05+0.11 9.0
BONET -26.1 = 0.9 108+ 033 0282 +0.000 3.74+0.00 9.12+0.07 055+0.13 0.78+0.00 — 5.7
DDOM -6677 6360 -423+128 0460+ 0.030 143 +0.00 556+0.02 054+0.15 051+020 -0.324+040 11.1
COM  -3099 £ 32.6 30.8+19.5 0439+£0.000 362+0.00 6.65+043 063+0.01 090+0.02 0.72 4+ 0.97 9.5
RoMA  -32.7 - 18.4 6.37 139 0433+0.040 337+027 6.66+098 050+0.14 030+£027 -0.70£0.02 94
BDI -1050 + 0.0 -0.20 £ 0.00 0.311 =0.000 3.264+0.82 5.61+0.00 048+0.00 067000 -248+233 10.8
ExPT -57.2 4+ 38.6 -15.9+241 0571 +£0.076 143 +0.00 6.774+1.38 056+0.06 0.66+020 -346+61.4 9.1
BootGen — -13.0 £ 15.1  0.942 +0.022 3.10+0.73 8.30+£0.93 0.59 +0.07 — — 6.2
ROMO -26144+739.9 -20.5+19.2 0.3824+0.2083 355+013 5.73+142 0.65+0.00 0.64+027 -0.71t£210 9.6
GAGA -2.9 + 2.2 -68.6 =109.8 0.571 +0.120 3.74+0.00 589+142 -1954+0.00 0.89+0.00 0.01+0.14 7.4
GABO -2.6 + 1.1 21.34+33.2 0570+£0.131 3604+040 751+039 060+0.07 0.71+0.01 0.60+1.80 3.8
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