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Background and Motivation
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Figure 1: The illustration of DeepSpeed Chat's RLHF training pipeline with optional features.
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Background and Motivation

Reward Hacking

Despite the success of reinforcement learning from human feedback (RLHF) in aligning language
models with human values, reward hacking, also termed reward over-optimization, remains a
critical challenge. This issue can be manifested in various ways, from copying styles without
generating meaningful content to exhibiting excessive caution in responses
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Figure 2: An example of overoptimization.
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Background and Motivation

Motivation

One primary cause of reward over-optimization in the reward modeling process is reward mis-
generalization, where RMs may incorrectly generalize training data, resulting in poor proxies for
actual human preference. This occurs because the same human feedback can be interpreted in
multiple ways by RMs, even with ample data.

Consequently, RMs often rely on spurious features, such as length bias, which correlate with
ranking labels but are irrelevant to human preferences. Over-exploiting such information leads to
RM overfitting, undermining generalizability and causing instability during the RL stage.
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Methodology

Main Idea

In this work, we propose a new reward modeling framework from an information-theoretic
perspective, namely, InfoRM. The advantages of our framework are two-fold:

Firstly, leveraging MI modeling, InfoRM removes irrelevant information from the IB latent

representation, ensuring generalizable human preference modeling. This directly addresses
reward misgeneralization by retaining only the features that genuinely reflect human preferences.

Secondly, InfoRM excels in detecting over-optimization. We discovered a correlation between
reward over-optimization and the emergence of outliers in InfoRM’s IB latent space, a phenomenon
absent in RM without IB. Based on this, we designed the Cluster Separation Index (CSI) to detect
over-optimization by quantifying deviations in RLHF model-generated sample distributions.
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Methodology

°
Overview
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Figure 1: Comparison between standard RM and our information-theoretic reward model (InfoRM).
InfoRM distinguishes itself by enhancing RM generalizability through mutual information modeling.
Additionally, a distinct feature of InfoRM is its overoptimization detection mechanism, which can
guide parameter selection and algorithm design in subsequent RLHF. Specifically, the RM encoder is
derived from the standard RM, with modification to the final layer.
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Methodology

Formulation
The objective of our information-theoretic reward modeling framework J(6@) can be formulated as follows:
max J(0) = max Lsietererice. — 19 Lporilennsk = max I(S,Y) - BI(X,S|Y),

The variational lower bound is:
J(@, ) > Jvie(®, V) = E(x,y)~D [Jpreference — BJbottleneck]
Tpsce = [ polsl2)log au(yls)ds
Jvottieneck = KL [y (S|), 7(S)],

Thus, the final objective for our information-theoretic reward modeling reads

{I(I;ipX} JVLB<¢7 ’lp) ~ {Iflgipx} ]E(mw,ml)ND [Lpreference - ﬂLbottleneCk]

Lpreference = loga (g¢(h¢(mw, ew)) - g¢(h¢(ml7 el)))
Lbottleneck =KL [p¢(s|ww)7 T(S)] + KL [p¢(S|azl), T(S)] ’
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Experiments

Simulated Experiments
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Figure 4: Simulated RLHF results for different proxy RMs (1.4B). Solid and dashed lines represent
the gold and proxy scores, respectively. In later RL stages, as KL divergence increases, Standard
RM shows a declining gold score and a rising proxy score, indicating overoptimization. Conversely,
our InfoRM maintains consistent growth in both scores, effectively mitigating overoptimization.
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Experiments

Real-World Experiments

Table 1: Comparison results of win, tie, and lose ratios of RLHF models using different RMs with
the optimal hyper-parameters (learning rate and kl penalty) under GPT-4 evaluation.

Anthropic-Helpful Anthropic-Harmless AlpacaFarm TL;DR Summary
Models Opponent - - - - - - - -
Wint Tie Lose] Win1T Tie Losel Win1T Tie Lose] Win1T Tie Losel]
SFT Model 570 27.0 160 57.1 262 166 489 30.8 202 73.1 173 95
InfoRM Standard RM 545 335 120 542 323 133 451 314 235 704 179 11.6
Standard RM w/ KL 49.0 315 195 443 442 114 385 352 263 686 215 98
Ensemble RM 43.1 331 238 493 348 159 373 378 249 614 281 105
WARM 41.1 334 255 493 385 122 303 405 292 63.1 18.6 183
InfoRM+Ensemble RM  Ensemble RM 487 357 156 525 351 124 412 382 206 633 30.1 6.6
InfoRM+WARM WARM 47.6 352 172 679 242 79 379 410 21.1 659 172 169
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Additional Strength

Reward Over-optimization Detection

e SFT Model Output o RLHF Model Output A Overoptimized Sample from RLHF Model (Judged by GPT-4)
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Dataset: Anth.-Helpful & RM used in RLHF: Standard RM Dataset: Anth.-Helpful & RM used in RLHF: InfoRM



Additional Strength

Reward Over-optimization Detection
e Step 1: Perform clustering on the RLHF model outputs within the latent space of our InfoRM.

Denote the clusters as C' = {C, Cs, ..., C,, }, where C; represents the i-th cluster, and n is the total
number of clusters. For each C;, compute the geometric centroid c; by

1
%=1 Y. % 6)

where |C;| denotes the count of points in C; and x represents the points within C;.

e Step 2: For each cluster centroid c; from Step 1, identify its nearest SFT model output. Calculate
the Euclidean distance d; between each centroid c; and its nearest SFT output as:

di = mi v y 7l
min lci — s|| (7)
where S represents all SFT outputs and || - || indicates Euclidean distance.

e Step 3: CSlis calculated as the sum of weighted distances by the number of the elements in each

cluster: n
CSI= ) |Cy|-d;. (8)
=1
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Additional Strength

Reward Over-optimization Detection
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