Faster Local Solvers for Graph Diffusion Equations

Jiahe Bai', Baojian Zhou'2, Deqing Yang ', Yanghua Xiao 2

"the School of Data Science, Fudan University,
2Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University

November 12, 2024

LBTHURERF¥EIXRE g,

Shanghai Key Laboratory of Data Science

1/20

Background: Graph Diffusion Equations

Given a propagation matrix M associated with an undirected graph G(V, £), a
general graph diffusion equation is defined as

oo
23 ks,
k=0

where f is the diffusion vector of a source vector s, and cx > 0.

2/20

Background: Graph Diffusion Equations

Given a propagation matrix M associated with an undirected graph G(V, £), a

general graph diffusion equation is defined as
fe Z ckM:s,
k=0

where f is the diffusion vector of a source vector s, and cx > 0.

Equ. M Ck S

Many graph learning tools can be represented PPR AD T [a(1—a)|es
as diffusion vectors. What's more, Katz A oF es
to compute fepr and fkarz, it is equivalent HK AD— e—TTk/k! e
to solving the linear system Qx = s. PR AD- (gkf;m)z e.
APPNP| D 2ADz|a(1 — a)k| x

3/20

Background: Graph Diffusion Equations

Given a propagation matrix M associated with an undirected graph G(V, £), a
general graph diffusion equation is defined as

oo
23 ks,
k=0

where f is the diffusion vector of a source vector s, and ¢, > 0.

10! ®
A key property of f is the high localization of its % :- o’ % .
entry magnitudes. We measure the localization =R ¢ .S .
by participation ratio p(f)=(Z1, [£[2)2/(n 0, |6]4). ‘g v bo ® o *Poe
B0 o ®
£ S eeeres °
= ® PPR .
& w07 Katz
® HK o,

12 3 45 6 7 8 9 1011 12 13 14 15 16 17 18

Graph Index

4/20

Faster Solvers via Local Diffusion Process

We propose a novel graph diffusion framework via a local diffusion process for efficiently
approximating GDEs.

5/20

Faster Solvers via Local Diffusion Process

We propose a novel graph diffusion framework via a local diffusion process for efficiently
approximating GDEs.

The local diffusion process is defined as a process of updates {(x(), F() Sy)}o<i<7.
<X(t+1), I‘(t'H), 8t+1> - (b (X(t)a r(t)a St, 37 €, g7 Ae)) O S t S T

We say this process converges when St = () if there exists such T; the generated sequence
of active nodes are S;. The total number of operations of local solver Ay is
T—1

Tap = > _vol(St) = T - vol(Sr).
t=0

6/20

Faster Solvers via Local Diffusion Process

The standard Gauss-Seidel iterative method with Successive Overrelaxation can be localized
via local diffusion process as

LocalSOR : x(tFt+1) — x(t+t) 4 ;. él(f“"), ptHtie) — p(tH0) _ . Q. é,f,t.“"),

7120

Faster Solvers via Local Diffusion Process

The standard Gauss-Seidel iterative method with Successive Overrelaxation can be localized
via local diffusion process as the following

LocalSOR : x(MHi) — x(tHt) (. gltHh) - pltrtie) — p(t+t) _ ;. @ g0

)

If we reformulate @x = s as X;' = arg min, g f(X) £ 1x7 Qx — s"x. The standard gradient
descent and Chebyshev methods can be localized as the following

LocalGD : x(H) = x(0 4 rg), p(1) = () _ Qr(i),

LocalCH : (1) = #(0) + 3 26”‘ D1/2r(t) + 01 (7 0 — 7"(t_1))$,, Otp1 = (L - 5r)71

1—a
D1/2r(t+1) — D1/2r(t) . (W(t+1) . TK'(t)) + (o a)ADf1(7r(t+1) _ TI'(t)).

8/20

Local Diffusion Process

0] o 0] © 5
12! o 14 12! 14
So = {0} Sy ={1,12} S, = {0,2,9,13, 14} Sy ={1,12} S84 = {0,2,5,13} Ss = {14}
L0] {1 5 o
L2 o 14

So = {0} S1 ={0,1,12} s; = {1,2,9,12,14} S3 = {5,13} Sy = {4,12}

9/20

Properties of LocalSOR

Let @ = I — 3P where Py, # 0if (u,v) € &; 0 otherwise, and P > 0, ,,. Define maximal value
Prax = maxucy || Pey|1. Assume that r(® > 0 is nonnegative and Pp.y, (3 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties

10/20

Properties of LocalSOR

Let Q@ £ I — 3P where P,, # 0 if (u,v) € £; 0 otherwise, and P > 0, ,. Define maximal value
Prmax = maxycy || Peyl|1. Assume that r(®) > 0 is nonnegative and P,y 3 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties

1. Nonnegativity. r(tt%) > 0forallt >0and t; = (i — 1)/|S;|.

11/20

Properties of LocalSOR

Let @ = I — 3P where Py, # 0if (u,v) € &; 0 otherwise, and P > 0, . Define maximal value
Prax = maxycy || Pey|1. Assume that r(® > 0 is nonnegative and Pp.y, 5 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties

1. Nonnegativity. r(tt) > 0forall t > 0and t; = (i — 1)/|S;|.
2. Monotonicity property. ||r(O)||y > - ||rF0 ||y > || (TG4

12/20

Properties of LocalSOR

Let Q@ £ I — 3P where P,, # 0 if (u,v) € £; 0 otherwise, and P > 0, ,. Define maximal value
Prmax = maxycy || Peyl|1. Assume that r(®) > 0 is nonnegative and P,y 3 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties

1. Nonnegativity. r(tt%) > 0forall t > 0and t; = (i — 1)/|S;|.
2. Monotonicity property. [[r(®|; > .. ||r(t+8)||; > ||t ..
If the local diffusion process converges (i.e., St =), then T is bounded by

1 S| (t+t)
1 Hro)!h _al S o2 S "
T< ~—a-sp." where T = 2\ T |

wYT(1 = BPmax) — r(D]J3 14

13/20

Properties of LocalSOR

® For o € (0,1),w = 1, the run time of LocalSOR for solving PPR with the stop condition
D=7 < e and initials x(©) = 0, (%) = qes is bounded as

vol(St)

T

1 vol(S7) In Ceer } , where

Tlocalsor, PPR < Min {, —
e ayT €
The estimate x(7) satisfies |[D~" (x(7) — fopRr)||o0 < e.

® Fora € (0,1/dmax),w = 1, the run time of LocalSOR for solving Katz with the stop
condition |D~1r(7)||,, < e and x(9) = 0 and r{®) = e is bounded as

1 vol(St) n Ckatz
e(1 — admax)’ (1 — almax)V7 €

vol(St)

} , Where <

o | =

7-LocaISOR, Katz < min { ;
T

The estimate fkary = x(7) — e satisfies ||fkarz — fraiz|l2 < ||(1 — A) "' D||1 - €.

14/20

Applications

Our accelerated local solvers are ready for many applications such as
® Solve GDEs with discrete-time dynamic graph.
® Accelerate the message propagation in GNN networks.

Alg 1 InstantGNN(LocalGS) (G, p, r,€,c,s,) Alg 2 InstantGNN(LocalSOR)(G, p, r, €, v, 5, 3, w)

1: while max, |r[u]| > ed![u] do 1: while max, |r[u]| > ed].;"[u] do
2. Push(u) 2. Push(u)
3: return (p,r) 3: return (p,r)

: procedure Push(u):

plu] < plu] + a - w - r[u]
rlu] < rlu] — w - r[u]
for v in NVoyu(u) do

1—a)-
el +w: d;(u:‘*[u])d:‘ﬂv]

: procedure Push(u):
plu] < plu] + o - r{u]
rful < 0

for v in AVoui(u) do

rs[v] « r[v] + ek

b [uldle V]

© N9~
@ N o a =

15/20

Experiments

® LocalSOR LocalGS & LocalGD & LocalCH
SOR v oGS ¥ GD Y CH
o ¥y
FQ\, 010
R Vo y ' (2 AS"
3 M
@ 10 ¥ vy o2
w .
s ! [N | []
-2 ee
g ¥ ceent
2 A2 ') $
o o
5 e
3 e
= se
T 23 45678 91011 121316151617 15
Graph Index

PPR(a=0.1,e = 1)

All local methods significantly speed up their global counterparts on all datasets.

¢

of Operations (3, vol

LocalSOR LocalGS @ LocalGD @ LocalCH
SOR 1 oGS Y G Y CH
v v v
¥ H
v v viy
Ty ¥ i bry sine
10°
10 V;"u" va
! egte®, ¢
v ye * ® o,."
e ¥
V¥ .
iy Ve,
10° .]
[3]
0 H
123456 78 9101113115161
Graph Index
Katz(oo = rigm, € = +)
1+]All2 m

100

® LocalSOR LocalGS
SOR Y GSs
Yy
¥
v Y N A
\ A4 v v
4 v
v
v
v v
enpgt?®
e800
et ?
eess®
123 45678 91011 121314151617 15
Graph Index
1
HK(7 =10,e = —=)
(€=

16/20

Experiments

<100

1
(//} = LocalSOR ® LocalSOR
= LocalGS 104 LocalGS
g 1 —— Speedup! Ratio
A j
W k3
~ 1074 T
w09 = &
2
2 o
S . S 3
o ® 3
5 © 1004 o
2 os 3 5.2
o oﬂ- n
. e
o o
3 07 e
0.9 1o L1 12 13 14 2717 272, 28 27% 2%
w €
25
N e ® o @[3
X PSC) °®
]] L
0 k2o 30
a a 10" 4
~— o ~ F25 ©
@ = o E=
E ¢ LlocalGs 153 £ ® LocalGD 2
= [o = GD 070
2 0 Speedup S 2 Speedup | B
‘g Ratio [rog =l Ratio 3
c aQ c ' [N
& « & F1oY
k5
k5
10714 1 1
: 7 2717 2 Ay 2 2~ 2
€ €

17/20

t

—— LocalGD

10! LocalSOR
LocalGS

GD(GPU)

= =
g E —e— LocalGD(GPU)
= = ;
" w0 10
£ £ /./
e R N
w0 —— D GD(GPU) o
SOR —e— LocalGD(GPU)
—— G5
€ €

()

Running Time

¥
¥
v
v
¥
s §
v v
M v
L]
. :
. ¥ LocalSOR & LocalGD(GPU)
v SOR # GD(GPU)
M Local6S ¥ LocalGD
[Y o
Citeseer ogbn-andiv wiki-talk com-orkut wiki-en21

LocalGD (GPU) can be much faster than GD (GPU) and other methods based on CPUs.

18/20

Experiments

2000

B InstantGNN(LocalSOR) Propagation M InstantGNN(LocalGS) Propagation I
InstantGNN(LocalSOR) Training ~ M8 InstantGNN(LocalGS) Training I
B InstantGNN(LocalSOR) Inference M8 InstantGNN(LocalGS) Inference

— ||
= 0 [| |
o 1500
£ | |
I
w g1t
I
‘S 1000
£
s
o
500
0
0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
Snapshot
a0
1| ~®@- LocalSOR(Dynamic) od
71 ~®- LocalGS(Dynamic) b
. 32| -@- LocalSOR(Static)
§70 g 10 | ~®- LocalGS(Static)
Eh S L o
S + 4 go®
< 68 5o - A% e 00"
—e— InstantGNN(LocalSOR) & o r.;:tf«'*
£ 02 = 3/.* =
67 —¥— InstantGNN(LocalGS 3 & ’1 -
() S0 o=tfj

34 5 6 7 8 9 1011 1213 14 15 16 0123 4 5 6 7 8 9 3011 1213141516

Snapshot Snapshot 19/20

e Qur code is publicly available at
https://github.com/JiaheBai/Faster-Local-Solver-for-GDEs.
e |f you have any questions, contact us:
Jiahe Bai, jhbai20@fudan.edu.cn;
Baojian Zhou, bjzhou@fudan.edu.cn.

20/20

https://github.com/JiaheBai/Faster-Local-Solver-for-GDEs

