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Background: Graph Diffusion Equations

Given a propagation matrix M associated with an undirected graph G(V, £), a
general graph diffusion equation is defined as

oo
23 ks,
k=0

where f is the diffusion vector of a source vector s, and cx > 0.
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where f is the diffusion vector of a source vector s, and cx > 0.

Equ. M Ck S

Many graph learning tools can be represented PPR AD T [a(1—a)|es
as diffusion vectors. What's more, Katz A oF es
to compute fepr and fkarz, it is equivalent HK AD— e—TTk/k! e
to solving the linear system Qx = s. PR AD- (gkf;m)z e.
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Background: Graph Diffusion Equations

Given a propagation matrix M associated with an undirected graph G(V, £), a
general graph diffusion equation is defined as

oo
23 ks,
k=0

where f is the diffusion vector of a source vector s, and ¢, > 0.
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A key property of f is the high localization of its % :- o’ % .
entry magnitudes. We measure the localization =R ¢ .S .
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Faster Solvers via Local Diffusion Process

We propose a novel graph diffusion framework via a local diffusion process for efficiently
approximating GDEs.
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Faster Solvers via Local Diffusion Process

We propose a novel graph diffusion framework via a local diffusion process for efficiently
approximating GDEs.

The local diffusion process is defined as a process of updates {(x(), F() Sy)}o<i<7.
<X(t+1), I‘(t'H), 8t+1> - (b (X(t)a r(t)a St, 37 €, g7 Ae) ) O S t S T

We say this process converges when St = () if there exists such T; the generated sequence
of active nodes are S;. The total number of operations of local solver Ay is
T—1

Tap = > _vol(St) = T - vol(Sr).
t=0
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Faster Solvers via Local Diffusion Process

The standard Gauss-Seidel iterative method with Successive Overrelaxation can be localized
via local diffusion process as

LocalSOR : x(tFt+1) — x(t+t) 4 ;. él(f“"), ptHtie) — p(tH0) _ . Q. é,f,t.“"),
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Faster Solvers via Local Diffusion Process

The standard Gauss-Seidel iterative method with Successive Overrelaxation can be localized
via local diffusion process as the following

LocalSOR : x(MHi) — x(tHt) (. gltHh) - pltrtie) — p(t+t) _ ;. @ g0

)

If we reformulate @x = s as X;' = arg min, g f(X) £ 1x7 Qx — s"x. The standard gradient
descent and Chebyshev methods can be localized as the following

LocalGD : x(H) = x(0 4 rg), p(1) = () _ Qr(i),

LocalCH : (1) = #(0) + 3 26”‘ D1/2r(t) + 01 (7 0 — 7"(t_1))$,, Otp1 = (L - 5r)71

1—a
D1/2r(t+1) — D1/2r(t) . (W(t+1) . TK'(t)) + ( o a)ADf1(7r(t+1) _ TI'(t)).
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Local Diffusion Process

0] o 0] © 5
12! o 14 12! 14
So = {0} Sy ={1,12} S, = {0,2,9,13, 14} Sy ={1,12} S84 = {0,2,5,13} Ss = {14}
L0] {1 5 o
L2 o 14

So = {0} S1 ={0,1,12}  s; = {1,2,9,12,14} S3 = {5,13} Sy = {4,12}
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Properties of LocalSOR

Let @ = I — 3P where Py, # 0if (u,v) € &; 0 otherwise, and P > 0, ,,. Define maximal value
Prax = maxucy || Pey|1. Assume that r(® > 0 is nonnegative and Pp.y, (3 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties
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Properties of LocalSOR

Let Q@ £ I — 3P where P,, # 0 if (u,v) € £; 0 otherwise, and P > 0, ,. Define maximal value
Prmax = maxycy || Peyl|1. Assume that r(®) > 0 is nonnegative and P,y 3 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties

1. Nonnegativity. r(tt%) > 0forallt >0and t; = (i — 1)/|S;|.
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Properties of LocalSOR

Let @ = I — 3P where Py, # 0if (u,v) € &; 0 otherwise, and P > 0, . Define maximal value
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Properties of LocalSOR

Let Q@ £ I — 3P where P,, # 0 if (u,v) € £; 0 otherwise, and P > 0, ,. Define maximal value
Prmax = maxycy || Peyl|1. Assume that r(®) > 0 is nonnegative and P,y 3 are such that
BPmax < 1, then the local diffusion process via LocalSOR with w € (0, 1) has the following
properties

1. Nonnegativity. r(tt%) > 0forall t > 0and t; = (i — 1)/|S;|.
2. Monotonicity property. [[r(®|; > .. ||r(t+8)||; > ||t ..
If the local diffusion process converges (i.e., St = ), then T is bounded by

1 S| (t+t)
1 Hro)!h _al S o2 S "
T< ~—a-sp." where T = 2\ T |

wYT(1 = BPmax) — r(D]J3 14
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Properties of LocalSOR

® For o € (0,1),w = 1, the run time of LocalSOR for solving PPR with the stop condition
D=7 < e and initials x(©) = 0, (%) = qes is bounded as

vol(St)

T

1 vol(S7) In Ceer } , where

Tlocalsor, PPR < Min {, —
e ayT €
The estimate x(7) satisfies |[D~" (x(7) — fopRr)||o0 < e.

® Fora € (0,1/dmax),w = 1, the run time of LocalSOR for solving Katz with the stop
condition |D~1r(7)||,, < e and x(9) = 0 and r{®) = e is bounded as

1 vol(St) n Ckatz
e(1 — admax)’ (1 — almax)V7 €

vol(St)

} , Where <

o | =

7-LocaISOR, Katz < min { ;
T

The estimate fkary = x(7) — e satisfies ||fkarz — fraiz|l2 < ||(1 — A) "' D||1 - €.
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Applications

Our accelerated local solvers are ready for many applications such as
® Solve GDEs with discrete-time dynamic graph.
® Accelerate the message propagation in GNN networks.

Alg 1 InstantGNN(LocalGS) (G, p, r,€,c,s, ) Alg 2 InstantGNN(LocalSOR)(G, p, r, €, v, 5, 3, w)

1: while max, |r[u]| > ed![u] do 1: while max, |r[u]| > ed].;"[u] do
2. Push(u) 2. Push(u)
3: return (p,r) 3: return (p,r)

: procedure Push(u):

plu] < plu] + a - w - r[u]
rlu] < rlu] — w - r[u]
for v in NVoyu(u) do

1—a)-
el +w: d;(u:‘*[u])d:‘ﬂv]

: procedure Push(u):
plu] < plu] + o - r{u]
rful < 0

for v in AVoui(u) do

rs[v] « r[v] + ek

b [uldle V]

© N9~
@ N o a =
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Experiments
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All local methods significantly speed up their global counterparts on all datasets.
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Experiments
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LocalGD (GPU) can be much faster than GD (GPU) and other methods based on CPUs.
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Experiments
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e Qur code is publicly available at
https://github.com/JiaheBai/Faster-Local-Solver-for-GDEs.
e |f you have any questions, contact us:
Jiahe Bai, jhbai20@fudan.edu.cn;
Baojian Zhou, bjzhou@fudan.edu.cn.
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