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Food Insecurity

"Enough food is produced today to feed everyone on
the planet, but hunger is on the rise in some parts of

the world, and some 821 million people are considered
to be “chronically undernourished” - United Nations



http://www.fao.org/sustainable-development-goals/goals/goal-2/en/
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The Role of Food Rescue

‘ = Available Rescues Y| ‘

Fresh Grocer Inc. (Downtown) going to
Main St. Soup Kitchen (Westside)
Today between 2:30pm and 4:30pm: 3.4mi

View Rescue

@
@



https://www.youtube.com/watch?v=yMGF4hQwu3M
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Notifications in Food Rescue

#FoodRescueHero, we need you! New rescue
from East End Food Co-op

Today between 11:08am and 2:30pm

Pick up from La Prima Espresso (CMU) at Porter

iC
Hall - Squirrel Hill North

mw

Trip Notification Trip Acceptance Trip Completion

How can we notify volunteers in Food Rescue to maximize donated
food, while keeping volunteers engaged?
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Volunteers Platform
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A Model of Food Rescue

Volunteers Platform
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Volunteers Platform
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Food Rescue Optimization

Probability any volunteer matches Fraction of engaged volunteers



Optimizing Notifications

00 N N
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Food Rescue Optimization |maxEqq [ ) (1= || —pa®s?) + N 2. 5]
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Probability any volunteer matches Fraction of engaged volunteers

Generalized Problem
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A Restless Multi-Armed Bandit (RMAB) : (B Restless Multi-Armed Bandit
g with Global Rewards (RMAB-G)
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Restless Multi-Armed Bandits with Global Reward

A Restless Multi-Armed Bandit (RMAB) - (B Restless Multi-Armed Bandit
; with Global Rewards (RMAB-G)
[A] [O] (@] : [A] (O] (@]
TR 0joojn 1141 |0 i 0jo o 1141}
Arm State @ : @
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Pulling arms results in separable rewards

How can we optimize the restless bandits with a global reward?

J

J

Pulling arms results in a global reward



Submodular Monotonic Functions

Let Ry, be submodular: Pulling extra arms gives diminishing returns
and monotonic: Pulling extra arms improves reward

®=0 é =06 é§=11
» )
&) = _/):10

Submodular Monotonic Functions are quickly optimizable and ubiquitous
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Recall our Goal

JT

00 N N
|
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Generalized Problem
(RMAB-Global)

What are existing solutions, without the global reward?
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Whittle Indices: Optimal policy for Restless Bandit
Pulls the arms with the largest value for some index, computed as
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Why Applying Whittle Indices is Difficult

Whittle Indices: Optimal policy for Restless Bandit

Pulls the arms with the largest value for some index, computed as

Penalty where pulling = not pulling
wi(s;) = min w Qi,w(S »0) > Qi,W(S 1)}

0,.,(5a) = — wa, + R(s, @) + yz P53 5 )V, (8, Vi () = max 0., (s, a)

a

Q-value with penalty w

Applying Whittle Indices requires separable reward function, which we don’t have
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Why Using Reinforcement Learning is Difficult

State Space Size: 2"

N
Action Space Size: ( )

We verify this later using Deep-Q Networks (DQNSs)

11
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Two Methods of decomposing global reward into Linear Sum

Linear-Whittle Index
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Two Methods of decomposing global reward into Linear Sum

R (

Linear-Whittle Index
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Decompose into sum of Shapley Values
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Main New Method: Linear- and Shapley-Whittle

Two Methods of decomposing global reward into Linear Sum

Linear-Whittle Index

R(1[—?_]1-i> 1?11 o?o-r) ~ R(1%|1-T) R(
Shapley-Whittle Index
1T1j R(1[?|1J oTo-r) R(OITIO'T) R(
R( 1?_]1-]) 1?11 oTo-r) ~ 1|_f|1

Decompositions allow us to use Whittle Indices

11) R(ooo-r)

Approximate Shapley Value of one arm

/
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Decompose into sum of Shapley Values
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Synthetic Empirical Verification

Linear- and Shapley-Whittle outperform baselines
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Synthetic Empirical Verification

Normalized with respect to random baseline
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Constructing a Food Rescue Simulation

5 Trips 25 Trips

Not Engaged

Engaged

50 Trips 75 Trips

No Notify Notify No Notify Notify

Engaged: Completed a trip in past 2 weeks

Not Engaged: No Trip Completion over past 2 weeks
Not Engaged

Engaged

States Transitions

Learn real transition matrices, states from volunteer data from 412 Food Rescue

1.0
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Two Food Rescue Settings

Notifications: Volunteers are notified en-masse about rescue
Large Budget (K) and number of volunteers (N), but low match probability

Phone Calls: Operators manually call top volunteers
Small Budget (K) and number of volunteers (N), but high match probability

15



Food Rescue Empirical Verification

16



Food Rescue Empirical Verification

1.2-
1.5-

1.0¢
1.0-

Normalized Reward

Notifications Phone Calls

Vanilla Whittle mm Greedy Bl Linear-Whittle Shapley-Whittle



Food Rescue Empirical Verification

S
(®)
=
3,
d
T 1.5
(),
N
©
S
o 1.0
=
Vanilla Whittle
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Food Rescue Empirical Verification
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19



New Contribution: Two Forms of Adaptivity

Two new forms of adaptivity that combine with Linear and Shapley-Whittle Indices

Iterative Linear-Whittle: Select arms one-by-one by re-computing Whittle index, based on the arms
already pulled

Previously: Marginal Reward for pulling arm 2 is R(s, {0,1,...,0})
Now: Reward for pulling arm 2, given arm 1is pulled, is R(s, {1,1,...,0}) — R(s, {1,0,...,0})

MCTS Linear-Whittle: Use Monte-Carlo Tree Search to search for best combination of arms
Compute R(S,a) for this combination of arms, then estimate future value via Linear-Whittle index

19



New Contribution: Two Forms of Adaptivity

Two new forms of adaptivity that combine with Linear and Shapley-Whittle Indices

Iterative Linear-Whittle: Select arms one-by-one by re-computing Whittle index, based on the arms
already pulled

Previously: Marginal Reward for pulling arm 2 is R(s, {0,1,...,0})

Now: Reward for pulling arm 2, given arm 1is pulled, is R(s, {1,1,...,0}) — R(s, {1,0,...,0})

MCTS Linear-Whittle: Use Monte-Carlo Tree Search to search for best combination of arms
Compute R(S,a) for this combination of arms, then estimate future value via Linear-Whittle index

Analogous definitions for Shapley-Whittle as well!
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Comparison on Food Rescue

Adaptive Methods are slightly better
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Generalized Problem
(RMAB-Global)

How close are our proposed solutions to the optimal 7T
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L.ower Bounds and Intuition

Theorem 1 (informal): Linear-Whittle is a f3;; ... approximation to the RMAB-G problem, where

R(s, a |
ﬁlinear — min ( ) > —

ses™,ae[0,11", ||al,<K Zi\il (R.(s;, a;) + p,(s;)a;) K

Linear Approximation of Global Reward

Intuition: The Linear Approximation to a Submodular Function cannot be very
far away from the original function, so perform at least Jj; .., as well as optimal
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Upper Bounds and Intuition

Theorem 2 (informal): For a given reward function, there exists transitions where Linear-Whittle achieves a
most a 6, .. fraction of optimal reward for the RMAB-G problem, where

. R(s, 4(s)) . o
linear — gis)l}v X R(s. a) a(s) = argmax,cro 11v,||al| < KZ (R(s;, a;) + p.(s)a;)
ac[0,1]V,||a||,<K i=1
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Upper Bounds and Intuition

Theorem 2 (informal): For a given reward function, there exists transitions where Linear-Whittle achieves a
most a 6, .. fraction of optimal reward for the RMAB-G problem, where

. R(s, 4(s)) . o
linear — gis)l}v X R(s. a) a(s) = argmax,cro 11v,||al| < KZ (R(s;, a;) + p.(s)a;)
ac[0,1]V,||a||,<K i=1

Intuition: Even in the absence of stochasticity, submodular functions cannot be
optimized perfectly, and so any policy is an imperfect approximation
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Applications and Open
(Questions




Other Applications
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Other Applications

Volunteer Emergency Dispatch
Volunteers transition between
availabilities + engagement, and
emergency trips arrive online
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Other Applications

OpenReview.net

<— Go to CVPR 2024 homepage

Conference on Computer Vision and Pattern
Recognition 2024

CVPR 2024

@ Seattle, USA & Jun 17 2024 (4 https://cvpr.thecvf.com/Conferences/2024
4 cvpr-2024-pcs@googlegroups.com

For Authors
Please see our call for papers and read the author and ethics guidelines, as well as the suggested practices for authors.

For Reviewers
Please read the reviewer guidelines.

Volunteer Emergency Dispatch Peer Review
Volunteers transition between Reviewers transition in availability
availabilities + engagement, and and new papers arrive online

emergency trips arrive online and need to be reviewed



Open + Future Questions

29



Open + Future Questions

29



Open + Future Questions

What happens if volunteer match probabilities change over time or
are contextual (e.g. dependent on trip location)?

How can we model the global nature of matching; the fact that
only one individual can actually match at any timestep?
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Open + Future Questions

What happens if volunteer match probabilities change over time or
are contextual (e.g. dependent on trip location)?

How can we model the global nature of matching; the fact that

only one individual can actually match at any timestep?

What happens if reward parameters or functions are unknown and
need to be learned?

29



Conclusion/Recap

Problem: How can we notify volunteers in food rescue with global rewards in a Restless Bandit scenario?

Solution 1: Linearize the global reward as a sum of local linear rewards using Shapley values

Solution 2: Improve on this by making linear approximations adaptive or iterative, essentially
incorporating search techniques
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