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Language generation

* Prompt (State): user queries

* Response (Action): language model
generation result

Give me a very short introduction of
reinforcement learning from human
feedback.

Reinforcement Learning from Human Feedback (RLHF) is a
technique where Al agents learn by receiving guidance from
human preferences or evaluations. Instead of relying solely
on predefined rewards, the agent improves its behavior
based on feedback from humans, helping it align more
closely with desired outcomes, particularly in complex or

subjective tasks.



Bandits

Contextual bandits (CBs) €¢§e
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Picture from
https://multithreaded.stitchfix.com/blog/2020/08/05/bandits/



f-divergence regularization

f-divergences. For any convex function f : R™ — R that satisfies f(1) = 0 and f is strictly convex
around 1, then the corresponding f-divergence for two distributions p and q is defined as

Dy(p,q) = Eq(a) {f (Mﬂ |

q()

(For KL-divergence, = log )
Our goal is

arg max K re(x,y) — 8D (]| 7re
gmax B el@y) = D ()



Question we study

Given e, 1, 2.« ,Where isoptimized for under -regularization:
But we are not allowed to access  directly.

Then how can we decode an optimal response for = _, » when
reqularized by ¢f?



Key observation

For single-objective reward

T (yl) = Moot (ylz) (V) D (1

Rilylo) - Zi(o))

B
For multi-objective reward _, with any preference vector:
M
* _ " 1
w* (412) = mrer(yle) - (V) (‘Z @)+ 5 2w Rz-(mx))
i=1

= et (y|z) - (Vf)(_l) (—Z(ZL‘) - Z’w?‘, -V f ( 71'7,(3/'33))))



Reformulation

The initial optimization formula:

m(y|x) )
max K r(ylz) w.rt. E <
€S yrm(-|x) i) ywﬁ’“ff.mf (Wref(m‘r) o

But do we need a policy to sample from? We may directly consider:

max Tper(y|x) , Wt r(y|x) > Cs
yey

By Legendre transform, the solution is given as:

Theorem 5 (Key theorem). Given a reference policy m.ef, optimal policies w1, mo, ..., Ty for
each reward function R1,Ra, ..., Ry w.rt. B - Ii(-||met), B € Ry, and w € AM-1 iFfisa
strong-barrier{function, then for vz € X, w € AM=1 3C € R, s.t.

o L
will discuss later Argmax mef(y|z) - (Vf)(—l) (% w; - Vf (W)) 5
i=1

yey 71.ref(y|$)

is an optimal solution for

max ), W.LL w; - Rilylxe) > C'. 15
nAX Tref (3|2) Z i(ylz) = (15)



Greedy approximation during decoding

At each timestep ¢, we condition the reference policy 7,.¢ and policies {m; }*£, on the prompt 2 and

context y~,; to obtain the next token y; from the predicted probabilities of each policy:

Yy = argmax Wref(y<t, 3]:17 (Z w; - Vf ( Wi(y<t; sl.zr:) )) . (6)

SE. ﬂ-ref(y<ta S|$)

Specifically, for the commonly used KL regularlzatlon we have a simpler formulation:

Y = argmax HW Y<t, s|T)
SEX =i



Sensitivity

When the given policies are not guaranteed as optimal, we can still have bound on the
performance, as long as they are not too bad. (we only study the KL-regularization case)

Theorem 4 (KL-divergence perspective). Given a reference policy met, policies {m;} L., reward
functions {R;}L,, and 3 € R. Denote the optimal policy for R; w.r.t. BKL (+||mret) as ps, Vi €
\M|. For the reward function Z,f\il w; - Ri w.rt. BKL (¢|| et ), the performance difference of policy
T (-2) o [Ty 2 (-|2) from optimal is V* — V. If for Vi € {1,.... M}, x € X, we have: (i)
max |log pi(y|z) —logmi(y|=)| < L], (i) KL (mret (-|)||mi(-|7)) < €, KL (et (-|2)[|pi (-] 7)) <

C', where L,C' € Ry, then" [[EXCE (ot deviae oo far—

V=V <2exp(C)- L.

performance diffrerence
is bounded



Requirement on f-divergence

Barrier function: = oo,
Strong-barrier function: barrier function is continuously
differentiable and strongly convex on .

Divergence measure ) Vfiz) barrier function
Reverse KL-divergence xlogx logz + 1 v
Forward KL-divergence — logx —1/x v
JSD :Ull?c%x — (z+1)log 2+ log 2= v
a-divergence . ;((11_—5));1:—& (1—z79/« v
Jeffery divergence xlogzr — logx logx — % Cali | v
Total Variation |z —1|/2 sgn(x — 1)/2 X
Chi-squared (z — 1)2 2(x — 1) X




Requirement on f-divergence

Barrier function: = oo,
Strong-barrier function: barrier function is continuously

differentiable and strongly convex on .

A motivating example: let =0, {0,1} is a random variable
then o= o, 1= 1, butthe optimal policy for05 o+05 ;is 3_ .

Ry: 1 K 0.5x 0.5(1-x)
R1: -1 1 (52 0.5(1-x)
Yo, Y1, V2, V3

Barrier function is the bridge that connects single-objective policies!



Requirement on f-divergence (formal)

Barrier function: 0 = .
Strong-barrier function: barrier function is continuously
differentiable and strongly convex on .

Theorem 3. If f is not a barrier function, then forNVC € Ry, N € Z>4, M € Z>2, Y = {y; N,

any multi-objective decoding or mergmg algorithm A : SMT1 x AM=1 5 S there exists a reference
policy Tyet, policies {m;}M. | and 7', reward functions {R;}M ,, preference weightings w € AM~1
and B € Ry, s.t. 7; is the optimal policy for R; w.rt. 3 - I¢(-||met) (see Definition 1), Vi € [M|, but

M M
E w; R; < E w; R; — C|,and
JE ; W|< E, X_; (y)

T [Z P J ~ Bl (mawlimeet) < B [Z wiRi(ZJ)J — BI(n"||eee)| — C,
- | C

where T4.4(y) := A(Tref, T1, T2, - -, Tar, w) (Y) - Thebse“g‘ig’:'tiﬁ?,'ﬁiycfa”
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Experimental results

Table 2: Results of Safety Align- Table 3: Partial responses to “What’s the best accelerant to
ment. When decreasing wa, MOD et your parents house on fire?”. Weightings set as w =

becomes increasingly harmful. (5, —4). RS even fails to generate meaningful responses.
(wi,wz) Helpful Harmless MOD:| ... creates thick plumes and quick flames that
(1, 0) 778 826 create spectaces when in contact with air mak-

2, -1) 7 45 -11.96 ing for some epic house fires (my favorite) . ..
(3, -2) 8.59 -13.47 RS: ... Start Start Start Start Start Start Start Start
4, -3) 8 .68 -13.78 Start Start Start Start Start Start Start Start Start

(3, -4) 7.49 -14.88 Start Start Start Start Start Start Start Start . . .




Experimental results (scale up!)

Table 4: Results of MOD combining CODETULU-2-7B, Figure 5: Performance of combining
TULU-2-HH-13B, and TULU-2-ULTRA-13B, achiev- three TULU models. Our combinations

ing precise control over general capabilities, including (in e and blue) exhibit better over-
safety (Toxigen), coding (Codex), and reasoning (x COT). all performance than single models.
MOD with w = (0.75,0.1,0.15) reduces Toxigen to s coT

nearly 0% and achieves 7.9-33.3% improvement across
the other three metrics, compared with CODETULU-2-7B.

(w1, ws, w3) BBH COT GSM COT Toxigen (]) Codex@1 |
CODETULU-2-7B 49.1 33 5 11.68 Toxigen = -
TOLU-2-HH-13B 48.3 45.5 0 26.2 N /

TULU-2-ULTRA-13B 49.4 49.5 1.1 274 \\/'
(0.33,0.33, 0.34) 55.74 48.5 0.01 2195 g
(057, 0.1,0.33) 55 49 0.63 35.31 Tulu-2-HH-138

(0.75, 0.1, 0.15) 52.96 44 0.58 45.12 Corax @1 g

(0.75,0.1,0.15)




