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Figure 1: Comparison between the spatial shift operator and the proposed deep Fourier shift
operator. (a) Traditional spatial shift operator involves a spatial shift mechanism that moves each
channel of the input tensor in a distinct spatial direction, thus suffering from severe region-aware
information loss and conflicting with the requirements of image restoration tasks. (b) Deep Fourier
Shifting/Cycling operator is a more ingenious information-lossless operator, which 1is tailored for
image restoration tasks. (c), (d) Deep Fourier shifting achieves a more stable performance gain than
the spatial shifting mechanism with varying “ns” shift displacements and “n” basic units over image
de-noising task where the cut-off is for compressing the vertical axis scale to better illustrate the
contrast effect clearly.
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Figure 2: (a) The information-lossless cycling mechanism. The discrete Fourier transform of a
signal exhibits period-extended and cycling properties. Specifically, in the Fourier domain, the two
pixels in sequence beginning and end may not appear adjacent, but due to the period property, they
are actually considered adjacent, as indicated by the upper right corner. This inherent period-extended
and cycling behavior of the Fourier transform enables us to model the shifting mechanism in a manner
that is information-lossless, making it well-suited for image restoration tasks. Consider the Fourier
transform of a discrete time-domain signal, represented as ( 12 ) It may appear that the values 3
and 5 are not adjacent within the main period. However, owing to the property of period extension,
the 3 from the previous period and the 5 from the current period are theoretically considered adjacent.
It is reasonable to move the removed area from the end to the front, meeting the cycling mechanism.
(b) Our deep Fourier shifting operator. Our operator borrows the principle of the spatial shifting
mechanism and models the shifting mechanism in information-lossless Fourier cycling rules. The
cycling 1s coded as 2D queue rolling.



Definitions. f(z,y) € RH*WXC ig the spatial signal and F(u,v) € RE*WXC denotes its Fourier
transform where (x,y) and (u, v) represent the space coordinates and Fourier spectrum, respectively.

Theorem. The Fourier transform of a discrete signal is a period-extended and cycling: F(u,v) =
F(u+ nH,v) = F(u,v + mW) = F(u + nH,v + mW) where v = 0,1,2,... . H—1, v =
0,1,2,...,W — 1 and n,m € N. N is the set of positive integers .f;rarringfmm zero.

2.1 Proof: The Fourier Transform of a Discrete Signal is Period-Extended and Cycling

We show the periodicity and cycling properties of the Fourier transform of a discrete signal, as
illustrated in Figure 2(a). Note that the Fourier transform F'(u,v) of f(x,y) is expressed as

H-1W-1
F(u,0) = g 2o 3 S g)e 20+, (1)
=0 y=0

Then, we show the periodicity of F(u,v) € RH*W with H and W. It means F(u,v) =
Fu + nH,v) = F(u,v + mW) = F(u + nH,v + mW) where u = 0,1,2,...,H—1,



v =0,1,2,...,W—1and n,m € N that records the set of non-negative integers. We take
the F(u,v) = F(u+nH,v + mW) for example and recall Eq. (1) as

F(u+nH,v + mW)
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where for any integer z, it has e = 27™* = 1,
Further, e~ %™ = 1 and e~ %™ = 1 for n, m € N. Therefore,
F(u+ nH,v + mW) = F(u, v)e HTMeTHT — F(u,v). (3)
Similarly, we can prove the periodicity of F'(u, v) as well.
F(u,v) = F(u+ nH,v +mW) @)

= F(u+nH,v) = F(u,v + mW).

Furthermore, deep Fourier transform can be expressed in Cartesian and polar coordinates by an
equivalent form as

F(u,v) = AP =a+ bj. (5)

The period-extended and cycling property holds over the amplitude-phase and real-imaginary format.



def DFS_AP(X):

# X: input with shape [N, C, H, W]

# A and P are the amplitude and phase
A.e{jP} = FFT(X)

(9]
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ourier shifting transform rules

torch.spilt (A, 4, dim=1)
torch.spilt (P, 4, dim=1)
= Fourier-cycling(A_g)

= Fourier-cycling(P_g)

= Convs_1x1(A_fc)

= Convs_1x1(P_fc)

# Inverse Fourier transform
Y = iFFT(A_fc, P_fc)

Return Y #[N, C, H, W]

def DFS_ab(X):

# X: input with shape [N, C, H, W]

# a and b are the real and imaginary part
a+bj = FFT(X)

# Fourier shifting transform rules
a_g = torch.spilt(a, 4, dim=1)

b_g = torch.spilt(b, 4, dim=1)
a_fc = Fourier-cycling(a_g)

b_fc = Fourier-cycling(b_g)

A_fc = Convs_1x1(a_fc)

P_fc = Convs_1x1(b_fc)

# Inverse Fourier transform
Y = iFFT(a_fc, b_fc)

Return Y #[N, C, H, W]

Figure 3: Pseudo-code of the two variants of the proposed deep Fourier shifting. The left is the
amplitude-phase variant while the right is the real-imaginary variant.



Table 1: Quantitative comparisons on low-light image enhancement. The arrow — denotes the
generalization setting by training on the data before the arrow and testing directly on the data after

the arrow.

Model Config LOL — — Huaweli Huawei — — LOL #Paras

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Original 19.7931 0.8361 17.7929  0.6247 | 20.1549  0.6851 18.0856  0.7543 | 0.55M
DRBN Shift-sa 19.7072  0.8343 17.6221 0.6071 | 20.2165 0.6873 179112 0.7532 | 041IM
Feycle-AP | 22.4274  0.8448 | 19.3252  0.6472 | 20.5855 0.6872 18.8666  0.7587 | 0.41M
Fcycle-ab | 22.2054  0.8429 19.3125  0.6431 20.6651 0.6876 | 19.1535 0.7681 | 041IM
Original 20.1062  0.7895 16.5874  0.5925 | 20.1742  0.6659 18.5468  0.7441 | 7.76M
SID Shift-sa 20.0148 0.7911 16.8214 05911 | 20.1517 0.6651 18.4998  0.7434 | 7.53M
Fcycle-AP | 22.8565  0.8019 19.1707  0.6238 | 20,9068 0.6708 | 18.8161 0.7494 | 7.53M
Fcycle-ab | 22.6313  0.7995 19.2471  0.6242 | 20.9271 0.6691 18.5741  0.7443 | 7.53M

Table 2: Comparisons on image denoising.

Table 3: Comparisons on image deblurring.

Dataset|Metric DNCRN Dataset|Metric DeepDeblur
Original Shift-sa Fcycle-AP Fcycle-ab Original Shift-sa Fcycle-AP Fcycle-ab
SIDD PSNR [37.1992 37.2247 37.6891 38.1837 GoPro PSNR [28.9423 28.9037 29.2123 29.1939
SSIM | 0.8954 0.8980 0.9013  0.9066 SSIM | 0.8716 0.8712 0.8777  0.8765
DND PSNR| 38.33 3842  38.69 38.65 HIDE PSNR|26.9770 26.9991 27.2860 27.2547
SSIM | 0.8974 0.8985  0.942 0.949 SSIM | 0.8468 0.8476 0.8541 0.8536
#Paras| 1.5IM 143M 1.43M 1.43M #Paras|11.72M 10.61M 10.61M 10.61M
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Figure 5: Visual comparison over image enhancement.
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Feature and Amplltude Components of Shift-sa in the Deep Layer

Figure 6: The effectiveness of information preservation. Left: we compare mutual information
levels before and after employing Fcycle-ab and Shift-sa operators on the LOL test set, respectively.
Our operator exhibits significantly higher mutual information than Shift-sa, showcasing its efficacy
in information preservation. Right: we visualize feature maps and their amplitude components
before and after operations. This demonstrates that our Fcycle-AP promotes frequency information
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Figure 7: The effect of shifting displacement
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Figure 4: The proposed operators improve the
training performance. It shows the training
PSNR on the image enhancement task on the
LOL and Huawei datasets in the top and bottom.



Thanks for your attention!



