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An illustrative example of Node Clustering Pooling

MP: Message Propagation

Input Graph Pooled Graph Pooled Graph
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Cluster Assignment + Graph Coarsening

compressing each cluster into a single embedding
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Graph Coarsening Pipeline leads to some problems when performing MP:
e overly homogeneous cluster representations

e |oss of node-level information

» Can we avoid reducing each cluster to a single node?

» We can envision the graph as a network of interconnected node sets.
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Having obtained the bi-level queries and keys, Now we have:
we consider how to measure their similarity. (K k) € Xo x Xn
K¢ :avalid kernel in the cluster-level space X~ {Qi,q:} € Xo x Xn

KN : avalid kernel in the cluster-level space X We should construct a kernel on

the tensor product space X¢o x Xy
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KB :a valid kernel in the cluster-level space X~ x Xy
We mainly consider two options for KB
» tensor product of kKo and KN

» Convex linear combination of kK and K

Refer to the paper for more details.
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e Using the kernelized softmax trick, but with a combined kernel!

e Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:
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Make it more Efficient

e Using the kernelized softmax trick, but with a combined kernel!

e Take Node-to-Cluster Attention with Tensor Product of Kernels as an example:

Step 1: O(|N|) Step 2: O(|€P|) Step 3: 0(|€7|) ¢(q1 Step 4: O(IN'”|) y(q
— N N Oﬁo\ﬂ _ _N
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Sum the key and value within every cluster Calculate the cluster-wise similarity as the Edge Cluster-wise propagation with Message in Step Finally each cluster unpacking the aggregated
according to the Cluster Assignment Matrix C Gate for message propagation among clusters 1 and Edge Gate in Step 2 keys and values with its own query.
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This process can be implemented as cluster-wise message propagation with PyG/DGL...

Refer to the paper for more details.
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Some Experimental Results

e Visualization of weight of the cluster-level kernel during the training process
e For social network datasets, N2C-Attn prefers cluster-level information

e For biology datasets, N2C-Attn balances its attention more equally between
both granularities
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Some Experimental Results

Comparison of attention strategies with different granularities

e We find that the variants that combine attention from both levels significantly
surpass those that do not.
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