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Motivation

•Gradient sparsity arises naturally in ML
•The fundamental question of how gradient (or data)

sparsity influences excess risk rates in DP learning has
been scarcely studied [ZMH:2021]
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(a) An illustration of embedding lookup.
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(b) Embedding gradient sparsity in Ads model.

Figure 1: Illustration of embedding lookup (a) and gradient sparsity of the Criteo pCTR model (b). We analyze
the gradient sparsity, averaged over 50 update steps, of the top five categorical features (out of a total of 26) with
the highest number of buckets, as well as the sparsity of all categorical features. For more information about this
dataset and model, see Section 4.1.1.

embedding size. The output of the embedding layer is computed as z = W>x, which is a linear map.
Due to efficiency considerations, in practice, embedding layers are rarely implemented via matrix
multiplication (matmul) on one-hot encoded inputs.

For a one-hot input x = ei, the embedding output is the ith row of the embedding table: z = W[i, :].
Figure 1a illustrates the embedding table lookup operation. Let @L/@z 2 Rd be the partial derivative
of the loss with respect to the embedding output. The gradient of the embedding table is rW =
x⌦ @L/@z, where ⌦ is the outer product. For a one-hot input x = ei, the result of this outer product
is a sparse matrix whose ith row equals @L/@z. For mini-batch SGD training, the number of non-zero
rows in the batch averaged gradient of the embedding table is upper bounded by the batch size, which
is typically orders of magnitude smaller than c. Consequently, the gradient sparsity (the fraction of
zero gradient coordinates) for large embedding models is very high (Figure 1b).

Due to this structured sparsity, in practice, both forward and backward computations of an embedding
layer are implemented efficiently with gathers and scatters1, without expensive matmul. This
difference from vanilla linear layers is crucial in real-world applications as the embedding tables
are usually very large, with the vocabulary size c ranging from tens of thousands (language models)
to millions (recommendation systems). Moreover, in some large recommendation system models,
there are hundreds of different categorical features, each with a different embedding table. Therefore,
maintaining the gradient sparsity is critical for any training process.

For notational simplicity, the description above focuses on single-variate features, which only activate
one feature value at a time. In practice, multi-variate features activating multiple values are also used.
In this case, it is common for the embedding layer to output the average or sum vectors corresponding
to each activated value. We also note that in recommendation systems, each categorical feature
generally has a separate embedding table; But for text models, all the words/tokens in an input
document share the same embedding table.

2.2 Differentially Private Stochastic Gradient Descent

Differential privacy (DP) [DMNS06, DKM+06] is a mathematical framework for ensuring the privacy
of individuals in datasets. It can provide a strong guarantee of privacy by allowing data to be analyzed
without revealing sensitive information about any individual in the dataset. Formally, a randomized
algorithm A satisfies (", �)-DP if for any two neighboring datasets D and D0 (i.e., datasets such that
one can be obtained from the other by adding/removing one example), and any subset S of outputs, it
holds for privacy parameters " 2 R>0 and � 2 [0, 1) that

Pr[A(D) 2 S]  e" · Pr[A(D0) 2 S] + �.

DP Stochastic Gradient Descent (DP-SGD) [ACG+16] is a recipe for training a deep learning model
with DP by modifying the mini-batch stochastic optimization process through the use of per-example
gradient clipping and Gaussian noise injection. When training an ML model f parameterized by ✓
with the per-example loss function `(·, ·)2 on dataset D, each optimization step t involves randomly

1Gather/scatter refers to a memory addressing technique that enables simultaneous collection (gathering)
from or storage (scattering) of data to multiple arbitrary indices. Refer to this wiki page for more details.

2The specific loss depends on the particular task and model (e.g. cross-entropy loss for classification).

3

Figure 1:Gradient sparsity for embedding features in ads model

[GHKKMSZ:2022]

Setting

1 Feasible set X ⊆ R𝑑 is closed, convex
2 Distribution D supported on Z, and dataset 𝑆∼D𝑛

3 𝑓 (·; 𝑧) convex (if not, we aim at stationary points) and
𝐿-Lipschitz and/or 𝐻-smooth wrt ∥ · ∥2

4 Gradient Sparsity: sup𝑥,𝑧 ∥∇ 𝑓 (𝑥, 𝑧)∥0 ≤ 𝑠

Stochastic Optimization (SO)

Objective: min𝑥∈X 𝐹D(𝑥) := E𝑧∼D[ 𝑓 (𝑥, 𝑧)]
Algorithm A : Z𝑛 ↦→ X is 𝛼-accurate for (SO) if

EA,𝑆[𝐹D(A(𝑆))] −min
𝑥∈X

𝐹D(𝑥) ≤ 𝛼

(𝜖 , 𝛿)-Differential Privacy

For neighbouring datasets 𝑆, 𝑆′

P(A(𝑆) ∈ 𝐸) ≤ 𝑒𝜀P(A(𝑆′) ∈ 𝐸) + 𝛿

Our Results

Setting Upper bound Lower bound
𝜀-DP 1∧

√︃
𝑠 ln 𝑑
𝜀𝑛

∧
√
𝑠𝑑
𝜀𝑛

1∧
√︃

𝑠 ln(𝑑/(𝜀𝑛))
𝜀𝑛

∧
√
𝑠𝑑
𝜀𝑛

(𝜀, 𝛿)-DP 1∧ (𝑠 ln(𝑑/𝑠) ln(1/𝛿))1/4√
𝜀𝑛

∧
√
𝑑 ln(1/𝛿)
𝜀𝑛

1∧ (𝑠 ln(1/𝛿))1/4√
𝜀𝑛

∧
√
𝑑 ln(1/𝛿)
𝜀𝑛

Table 1:Upper/lower bounds for DP ℓ2-mean estimation. New regimes in red.

Setting Guarantee
New Upper bound

(sparse)
Upper bound
(non-sparse)

(𝜀, 𝛿)-DP Cvx. ERM (𝑠 ln(𝑑) ln(1/𝛿))1/4√
𝜀𝑛

∧ R𝜀,𝛿 R𝜀,𝛿

SCO (𝑠 ln(𝑑) ln(1/𝛿))1/4√
𝜀𝑛

∧ R𝜀,𝛿 + 1√
𝑛

R𝜀,𝛿 + 1√
𝑛

𝜀-DP Cvx. ERM
(
𝑠 ln(𝑑)
𝜀𝑛

)1/3
∧ R𝜀 R𝜀

SCO
(
𝑠 ln(𝑑)
𝜀𝑛

)1/3
∧ R𝜀 + 1√

𝑛
R𝜀 + 1√

𝑛

(𝜀, 𝛿)-DP Emp. Grad. Norm (𝑠 ln(𝑑/𝑠) ln3(1/𝛿))1/8
(𝜀𝑛)1/4 ∧

(
R𝜀,𝛿

)2/3 (
R𝜀,𝛿

)2/3
Table 2:Rates for DP optimization with sparse gradients. Polylog(𝑛) factors omitted. Above
R𝜀,𝛿 =

√︁
𝑑 ln(1/𝛿)/[𝜀𝑛] and R𝜀 = 𝑑/[𝜀𝑛]. New regimes in red.

Upper Bounds for Mean Estimation

Algorithm: Projection Mechanism [NTZ:2013]

Input: 𝑧(𝑆) = 1
𝑛

∑𝑛
𝑖=1 𝑧𝑖

Output: 𝑧̂ = arg min{∥𝑧 − [𝑧(𝑆) + 𝜉] ∥2 : 𝑧 ∈ B𝑑
1 (0, 𝐿

√
𝑠)} where

𝜉 ∼


Lap(𝜎)⊗𝑑 with 𝜎 =
2𝐿

√
𝑠

𝑛𝜀
if 𝛿 = 0

N(0,𝜎2𝐼) with 𝜎2 = 8𝐿2 ln(1.25/𝛿)
(𝑛𝜀)2 if 𝛿 > 0

If 𝛿 > 0, a tighter bound can be obtained by (noisy) compressed sensing.

Algorithm: Gaussian ℓ1-Recovery

Input: 𝑧(𝑆) = 1
𝑛

∑𝑛
𝑖=1 𝑧𝑖

𝑚 = 𝑛𝜀

√︃
𝑠 ln(𝑑/𝑠)
ln(1/𝛿) , 𝜎2 = 18𝐿2 ln(2.5/𝛿)

(𝑛𝜀)2 , 𝐴 ∼ (N (0, 1/𝑚))⊗𝑚×𝑑, 𝑏 = 𝐴𝑧(𝑆) + 𝜉

Output: 𝑧 = arg min{∥𝑧∥1 : 𝐴𝑧 = 𝑏}

Algorithms are nearly optimal, evidenced by lower bounds obtained by a novel
block-diagonal construction whose blocks contain dense-case hard datasets.

Upper Bounds for DP-SO

•We introduce a novel output perturbation with ℓ∞-projection that
is provably nearly optimal for DP-ERM/SCO in high-dimension.

Algorithm: Output Perturbation with ℓ∞-Projection

Input: Dataset 𝑆 = (𝑧1, . . . , 𝑧𝑛), regularization param. 𝜆 > 0
𝑥∗
𝜆
(𝑆) = arg min{1

𝑛

∑𝑛
𝑖=1 𝑓 (𝑥; 𝑧𝑖) + 𝜆

2∥𝑥∥
2
2}

𝑥 = 𝑥∗
𝜆
(𝑆) + 𝜉 where

𝜉 ∼


Lap(𝜎)⊗𝑑 with 𝜎 = 2
√

2𝑠𝐿
𝜆𝑛𝜀

(2𝐻
𝜆
+ 1

)
if 𝛿 = 0

N(0,𝜎2𝐼) with 𝜎2 = 8𝐿2 ln(1.25/𝛿)
(𝜆𝑛𝜀)2 if 𝛿 > 0

Output: 𝑥̂ = arg min ∥𝑥 − 𝑥∥∞

•We introduce a bias-reduced DP-SGD method for convex and
nonconvex losses, following the debiasing approach in [BG:2015]

•SGD analysis depends on a randomly increasing privacy budget
[WRRW:2023] ⇒ algorithm runs for a (random) stopping time

•Bias-reduction introduces heavy-tailed stochastic oracles whose
convergence can only be guaranteed with constant success
probability. DP boosting approaches imply high-probability
guarantees [LT:2019]

Subsampled Bias-Reduced Gradient Estimator

Input: 𝑆 = (𝑧1, . . . , 𝑧𝑛), 𝑥 ∈ X
Sample 𝑁 ∈ [log (𝑛) − 1] with P[𝑁 = 𝑘] ∝ 2−𝑘 =: 𝑝𝑘
𝐵 ∼ Unif(

( 𝑛
2𝑁+1

)
); 𝑂, 𝐸 equipartition of 𝐵; and 𝑖 ∼ Unif( [𝑛])

Apply DP-Mean Estimation
[∇𝐹𝐵,∇𝐹𝑂,∇𝐹𝐸,∇ 𝑓 (·, 𝑧𝑖)] (𝑥) ↦→ [𝐺+

𝐵(𝑥),𝐺−
𝑂 (𝑥),𝐺

−
𝐸 (𝑥),𝐺𝑖(𝑥)]

Output: G(𝑥) = 1
𝑝𝑁

[
𝐺+

𝐵
(𝑥) − 1

2
(
𝐺−

𝑂
(𝑥) +𝐺−

𝐸
(𝑥)

) ]
+𝐺𝑖(𝑥)
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