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Motivation

e Gradient sparsity arises naturally in ML

e The fundamental question of how gradient (or data)

sparsity influences excess risk rates in DP learning has
been scarcely studied [ZMH:2021]
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Figure 1:Gradient sparsity for embedding features in ads model
[GHKKMSZ.:2022]

Setting

oFeasible set X C R4 is closed, convex
® Distribution D supported on -Z, and dataset S~D"

® f (-; z) convex (if not, we aim at stationary points) and
L-Lipschitz and/or H-smooth wrt || - ||2

o Gradient Sparsity: sup, [V f(x,2)[lo < s

Objective: min,cx Fp(x) := I, p[f(x,2)]
Algorithm A : " — X is a-accurate for (SO) if

Eas[Fp(A(S))] - I)gl)lil Ip(x) < «a

For neighbouring datasets S, S’
P(A(S) e E) < eP(A(S") € E)+06
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Our Results
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Table 1:Upper/lower bounds for DP {>-mean estimation. New regimes in red.
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Table 2:Rates for DP optimization with sparse gradients. Polylog(n) factors omitted. Above
Res = \/d In(1/6)/|en] and R, = d/|en]. New regimes in red.

Upper Bounds for Mean Estimation

INTZ:2013]

Input: Z(S) =1 37" z;
Output: 7 = argmin{||z — [Z(S) + &]||» : z € Bf'(O, L+/s)} where

: Lap(0)®? with o = 22‘2/5 if6=0
N (0., 021 with 2 = 320025/0) 4 5 9

(ne)?

If 6 > 0, a tighter bound can be obtained by (noisy) compressed sensing.

Input: Z(S) =137 z;

sIn(d/s 18L%1n(2.5/6 m _
e BT~ BRSO A (N1, - A2
Output: 7 = argmin{||z||; : Az = b}

Algorithms are nearly optimal, evidenced by lower bounds obtained by a novel
block-diagonal construction whose blocks contain dense-case hard datasets.
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Upper Bounds for DP-SO

e We introduce a novel output perturbation with £-projection that
1s provably nearly optimal for DP-ERM/SCO 1n high-dimension.

Input: Dataset S = (21, ..., 2,), regularization param. 4 > 0

x5(S) = argmin{: X7, f(x;2) +4llx|I%}
X =x,(S) +& where

Lap(0)®? with o = 22L(2H 1 1) jf 5 = (

: 8L*1In(1.25/6) .
N (0, 21 with 02 = (3; 8)2/ ) if 6 > 0

§~

Output: x = arg min ||x — X||

e We introduce a bias-reduced DP-SGD method for convex and
nonconvex losses, following the debiasing approach in [BG:2015]

e SGD analysis depends on a randomly increasing privacy budget
[WRRW:2023] = algorithm runs for a (random) stopping time

e Bias-reduction introduces heavy-tailed stochastic oracles whose
convergence can only be guaranteed with constant success
probability. DP boosting approaches imply high-probability
guarantees [LT:2019]

Input: S=(z1,...,2,), x € X

Sample N € [log (n) — 1] with P[N = k] « 27% =: p,

B ~ Unif((,x+1)); O, E equipartition of B; and i ~ Unif([n])
Apply DP-Mean Estimation

[VE,VFo,VFg, Vf(-,2)](x) = [Gg(x),G,(x),G(x),Gi(x)]
Output: G(x) = I%N[G}g(x) — %(Gé(x) + G;:(x))] + Gi(x)
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